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Relativistic quasilinear diffusion in axisymmetric magnetic geometry
for arbitrary-frequency electromagnetic fluctuations
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A relativistic bounce-averaged quasilinear diffusion equation is derived to describe stochastic
particle transport associated with arbitrary-frequency electromagnetic fluctuations in a nonuniform
magnetized plasma. Expressions for the elements of a relativistic quasilinear diffusion tensor are
calculated explicitly for magnetically trapped particle distributions in axisymmetric magnetic
geometry in terms of gyro-drift-bounce wave-particle resonances. The resonances can destroy any
one of the three invariants of the unperturbed guiding-center Hamiltonian dynami2€0®
American Institute of Physic$DOI: 10.1063/1.1773554

I. INTRODUCTION A. Canonical quasilinear formalism

Understanding the oh ¢  of ical The derivation of a quasilinear diffusion equation in ca-
nderstanding the phase-space transport of magnetica p{onical action spacgvith coordinates)) was first performed

trapped relativistic elggtrons is aq intr.insically interesting';;by Kaufmant in which the background Vlasov distribution
general problem, and it is an especially important problem IN=(3,7) evolves on a slow time scale=¢€2t) determined by
magnetospheric plasma physics because these energetic pgys amplitudg(ordered by the dimensionless paramedeof
ticles can damage spacecraft electronics and they presentig electric and magnetic fluctuations. The quasilinear diffu-
radiation hazard to astronauts. The quasilinear theory of sudkion equation in action space is given in its general form as
anomalous transport processes is based on resonant wave- F

particle interactions in which characteristic wave frequencies —2 = 7. (DCQL : Q), (1)
match one or more of the orbital frequencies associated with gr  4J JJ

the gyration, bounce, and drift motion of chargedwhere the action coordinatdamay either beexactinvariants
particles'™ In particular, diffusion due to drift-resonances (corresponding to exact symmetries adiabaticinvariants
with low-frequency magnetohydrodynamHD) wave$®  (corresponding to approximate symmetji€ghe canonical
and diffusion due to cyclotron-resonances with various highquasilinearCQL) diffusion tensor ' is expressed as
frequency waves™ are frequently cited as important trans-
port mechanisms for relativistic electrons in Earth’s mag-
netosphere. Previous work on these transport mechanisms _
has typically been restricted to either the low-frequencywhere dHp, denotes the Fourier component of the perturba-
wave interactions, which may break the second and thirdion Hamiltonian sH with a discrete frequency spectrum
invariants, or the high-frequency wave interactions, which(represented by the wave frequenay) and m-Q=mJ);

may break the first and second invariants. However, there hgdSummation over repeated indices is, henceforth, implied
been little work on a unified theory in which all the interac- with ) =9Ho/ 4J' denoting the unperturbed orbital frequency
tions can be considered together derived from a Hamiltoniaitly averaged over all fast orbital

Our previous work' (henceforth referred to as Papér | time scales.

. tiqated relativisti i diffusion t ¢ due t Expression(2) clearly establishes the paradigm of qua-
Investigated refativistic quastiinear dittusion transport du€ 0g;nq 5 transport theory: wave-particle resonan¢ebere

low-frequency electromagnetic fluctuations, which preserveqok:mlﬂ) introduce explicit violations of the invariance

the first adiabatic invariant, based on the low-frequency re|a(exact or adiabatjcof action coordinates leading to stochas-
tivistic gyrokinetic Vlasov equatioff.“In the present work, tic transport in action space. Note that the canonical quasi-
we modify the low-frequency gyrokinetic formalism to allow |inear diffusion tensot2) can be written

for arbitrary-frequency electromagnetic fluctuatiotend,

thus, allow for processes which break any one of the three DeqL= > dEﬁEL)FEﬁEU: 3
invarianty and retain full finite-Larmor-radiug-LR) effects mK

associated with the electromagnetic fluctuations. Althoughn terms of the canonical quasilineaoefficient matrix
FLR effects are not important for interactions of relativistic dﬁﬁf”zmm and the canonical quasiline@otential Fiﬁf”
electrons with MHD waves, they are crucial for interactions=78(w,—m -Q)|5Iqu|2. Here, thedimensionalityof quasi-

with cyclotron-frequency wave's® linear transport is represented by the dimensionality of the

DCQL:E mm[ 78w, —m 'Q)|5ﬁmk|2]v (2
m,k
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coefficient matrixdp, , and theuniversality of quasilinear viewed as zero-frequency magnetic perturbation fields. The

transport is represented by the fact that a single quasilineaalidity of these assumptions will be checked in future work

potentiall'y,  describes quasilinear transport along differentwhen an alternate model including a more realistic nonaxi-

action coordinates. symmetric magnetic geometry and a background electric
field is considered.

B. Organization of paper

The remainder of the paper is organized as follows. if Axisymmetric magnetic geometry

Sec. Il, we introduce the unperturbed and perturbed relativ-  The background magnetic field in axisymmetric mag-
istic guiding-center equations in terms of magnetic coordinetic geometry can be expressed in terms of magnetic coor-
nates(y, ¢,s) associated with an unperturbed axisymmetricdinates(y, ¢,s) as
magnetic field configuration. The invariant coordinates X
=(Jq,£,Jg) in axisymmetric magnetic geometry are the rela- B=VyX Ve=B(,5—, (4)
tivistic guiding-center gyro-actiody, the relativistic guiding- s
center kinetic energy, and the guiding-center drift action \yhere ¢ denotes the magnetigadia) flux function (i.e.,
Jg=q¥lc. Here, energy is used instead of the bounce action B-V =0), the azimuthal angle is an ignorable coordinate
J, to ensure that all three of the invariant coordinates ar i.e., in axisymmetric magnetic geometry, unperturbed scalar
local (i.e., they depend on local properties of the ba(_:kgroungiekjS are independent af), and s is the parallel spatial
plasma. The perturbation guiding-center Hamiltonia@i,  coordinate along a single magnetic field line labeled by
expressed in terms of the perturbation electromagnetic poteny o).
tials (8¢, 6A) causes the destruction of the unperturbed in-  he magnitudeB(i,s) of the magnetic field, on the one
variantsl (i.e., 8l ={I , 8H} # 0, where{,} represents the Pois- hand, is defined from Eq(4) as B=V¢Xx V¢-Vs and
son bracketand leads to stochastic quasilinear diffusion inB™Y(y,s) denotes the Jacobian for the transformatn
invariantl -space due to resonant wave-particle resonances. , (y, , ). The local magnetic unit vectdfr:B/B:asX, on

In Secs. Il and IV, an explicit expression for the relativ- the other hand, can be expressed as
istic quasilinear diffusion equatiafl) in axisymmetric mag- R
netic geometry in terms of the invariant coordinates b=Vs+a(y,5)V . (5)
(Jg,&,Jg) is derived. In Sec. lll, the quasilinear coefficient
matrix d, is derived and then, in Sec. IV, the quasilinear
potential I', .. The present derivation follows closely the _~ X Vi§-Vs
derivation found in Paperf We summarize our results in a9 =b- I/, - |V 2’
Sec. V and discuss applications. ) _ ) )

Since quasilinear diffusion is often described in the lit- which characterizes the nonorthogﬂonallty of the coordinates
erature(e.g., see Ref.)dn terms of the equatorial pitch angle (#,9), is required to ensure tha&t X b+ 0 and is associated
instead of the gyro-action, the corresponding relativistic quawith magnetic curvaturg through the relation (956
silinear diffusion equatioql) is presented in Appendix A. In  =(92)V 4. We note that, for an axisymmetric dipole mag-
particular, we show how the quasilinear coefficient matrixnetic field (which is curl-freg, we can writeB=V (¢,)
transforms when the relativistic guiding-center gyro-actionand, thus, using Eq5), we find dy/ds=B and dy/ dyy=aB.
Jq is replaced with the equatorial pitch angle. Lastly, Appen-  Next, we define the radiuR(,s)=|V ¢|™* (which mea-
dix B presents two expressions for the bounce-averaged drifiures the distance to the symmetry &dad obtain the ex-
frequency which might be useful for computational applica-pression|V ¢{=BR from Eq. (4). We can, thus, define the
tions. following perpendicular unit vectors

Here the scalar field

Il. RELATIVISTIC GUIDING-CENTER DYNAMICS IN y=(BR™Vy, andp=RV g, (6)

AXISYMMETRIC MAGNETIC GEOMETRY AL .
such that the unit vectois, ¢,b) form a right-handed set of

We begin our analysis of relativistic quasilinear transport it vectors(i.e., b= ).
in axisymmetric magnetic geometry by first providing a gen-
eral representation of axisymmetric magnetic geometry
terms of magnetic coordinate@lso known as Euler or
Clebsch potentia)s Next, we present the equations of rela- ~ The unperturbed relativistic guiding-center dynamics of
tivistic guiding-center Hamiltonian dynamics in unperturbeda charged particle of masd and chargey in axisymmetric
and perturbed axisymmetric magnetic geometry. Unpermagnetic geometry is represented in terms of the magnetic
turbed guiding-center Hamiltonian dynamics establishes thgoordinates(y, ¢,s), the unperturbed relativistic guiding-
existence of three invariants, which are then destroyed bgenter kinetic energy
arbitrary-freq_u_ency electromagnetic perturbation fields. e=(y- DM = M+ oMo + P22 -Mc, (7)

In the spirit of perturbation theory, we assume that elec- g7 "
tric fields are not part of the quasi-static background fieldsvherewy=qB/Mc denotes the rest-mass gyro-frequency and
(i.e., electric fields are automatically viewed as perturbatiorp=yMuy| denotes the parallel component of the relativistic
fields) and any axisymmetry-breaking magnetic fields arekinetic momentum, the relativistic guiding-center gyro-

irb. Unperturbed guiding-center dynamics
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actionJ;=|p, [*/(2 Mwg), and the gyro-anglé. The unper- J (1 9/ ca 3 [ wy
turbed relativistic guiding-center Lagrangian is written as Ea m T s m + e m =0,
Lo=Jup+ PS5+ @) + Iyl = &, ® (14)

where A=¢V ¢ is the vector potential associated with the %(ﬁ) + é(ﬁ) =0,
magnetic field(4) and Jy=qy/c denotes the drift action, g !
while, using Eg.(7), the magnitude of the relativistic which follow from the definitions forw, |v, and wy. We
guiding-center parallel momentum is further note that although the magnetic coordinatend the
f drift action J4 are simply related in axisymmetric magnetic

[Pl = M uy] = Vs> + 2M(e = Jgwg). ©) geometry, th(ijs simple Fr)e)qation is destroyZd by nonaxisgymme-
The unperturbed relativistic guiding-center Poisson bracketry; we, henceforth, us¢ andJy separately as followsly is
{,}, on the other hand, is expressed in terms of two arbitraryised whenever dynamics is concerned whils used when-

functionsF and G on guiding-center phase space as ever magnetic Coolrdinates are concerned.
JE[ G JG JF JE\ G 'As in nger i the unpertyrbed guiding-center Hamll-
FG=—|—T+0o.— |- | —+w— | — ton’s equations, expressed in terms of the coordinates
9¢ \ g e g de) I (Ju ¢,S; £,d4,0) and the unperturbed relativistic guiding-
g[:(ae JG CagG) (aF IE center HamiltoniarHy=e¢, include the magnetic-coordinate
— [ + _____ — PR .. . . g _ .
e\ 934 Od q ds g Od components of the relativistic guiding-center velocity
ca&F) oG (aF oG oF aG) 10 Ji=0, ¢o=wy, SH=0, (15)
SRS Rl )| RS
q s/ de Js de e ds and the velocity-space guiding-center equations

wherew,= y‘lwg denotes the relativistic gyro-frequency and
the azimuthal drift frequency is defined as

((9% acawc> N pf sa Thus, the drift actionJy(=qi/c), the kinetic energy, and
d = Jg Il

g0=0 :ngv {o= w. (16)

(11)  the gyro-action]y are the three invariants of unperturbed
relativistic guiding-center motion in axisymmetric magnetic
The Jacobian for the guiding-center transformation geometry. From these unperturbed Hamilton’s equations we
construct the unperturbed time evolutiolasov) operator
(x,P) = 2" = (Jg.0,5.8.3.0) P Orlasoy op

is 7=1/lv|, wherejv,| is obtained from Eq(9). We note that
the Poisson brackegtlO) can also be expressed in phase-

Ed g ds YM ds’

do_ 9 J J J
=ty tog oo (17)
dt at g5  Tdp A

space divergence form as In the absence of electromagnetic fluctuations, the unper-
gF oG 1 9 G turbed Vlasov equatiomyFy/dt=0, therefore, implies that
{F.G}= @Jaﬁa_zg = Tz jFJ“BEg ; (12 the unperturbedbackgroungl Vlasov distributionF(l) is a

function of the three guiding-center invariarits (Jy,&,Jg)
whereJ*#={z*,ZP} denotes the elements of the antisymmet-associated with axisymmetric magnetic geometry. In the
ric Poisson-bracket tensor and we used the Liouville identipresent work, in order to correctly account for wave-particle

ties(B=1,...,6 gyroresonance effects, we retain full finite-Larmor-radius
J (FLR) effects associated with electromagnetic fluctuations
Ey(j‘]ab’) =0. (13 and, thus, we need an expression for the gyroragiuhe

gyroradius vectop(X ,&,J4,¢) is defined locally in terms of

These identities follow from the divergenceless property oftheé magnetic coordinates as
the Hamiltonian flomassociated with Liouville’s theorem

p=plcos{y-sin{f), (18)
I T R ap.9H ~
0 a7 Z= 3@(32 )= 3@ 7 978 where the unit vectorgy, @) are defined in Eq(6) and the
magnitudep=v , / w. of the gyro-radius vectop is given as
19 oH #H
=~ — (P 5+ 3 : 2]
L4 9zP 9Z49ZP Qo ths) = \| ——9— (19)
1% g!dl; ng(¢’s)-
Since the Poisson matrig®? is anti-symmetric, the term )
J®B2 H vanishes, and we find In Sec. IV, the spatial dependence of the perturbed elec-
s tromagnetic fields(in guiding-center phase-spaceill in-
0 zli(jJaﬁ)ﬂ volve the combination//+p-V ¢/, which denotes the posi-
Jaze 9zZP’ tion x=X+p of a particle in terms of the guiding-center
i i = . H ing Eqs(
which must be true for all Hamiltoniansl and, thus, we gg)gnvsgiiﬁgordmate& (#,¢,5). Here, using Eqs(6) and
obtain the Liouville identitieg13). In particular, the Liou- '
ville identities for ¢ and ¢, respectively, are p- Vi=p|V ylcos{ = Ay cost,
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p-Ve=-p|Velsin{=-(p/R)sing, (20)
p-Vs=—ap - Viy=-aAycos{,
so that a generic perturbation scalar field
SxX +p,t)y=expp- V)ox(X,t)
= SgeX(¥,¢,5,€,34,41) (21)
can be expressed as
SY(X +p,t) = ex;{— (Bsin g)i +AY cosg“(i
R dp oy
- ai)} Sx(,@,5,1). (22)
Js

Relativistic quasilinear diffusion in axisymmetric... 4223
. J cad
552{5,51"}:(0”_"'__)5}_', (29)
de q do
So={ m}—(i—@i+ ﬁ)aH (30)
PO g qas Mae)

From Egs(25) and(27), we note that the gyro-actiaky and

the drift-actionJy are destroyed if the perturbation Hamil-
tonian sH depends on the gyro-angleand the azimuthal
angle ¢, respectively. Moreover, the destruction of the gyro-
action invariance leads to the possible loss of trapped par-
ticles while the destruction of the drift-action invariance
leads to radial transport.

This expression will be used later in obtaining Fourier-Besselll. RELATIVISTIC QUASILINEAR DIFFUSION TENSOR

expansions in gyro-ranglé for the electromagnetic pertur-
bation fields.

C. Perturbed guiding-center dynamics

In this section, we proceed with a two-time-scale analy-
sis of the perturbed Vlasov equation

2o, GodF _

o7 dt - 6{(FO+ 65F)161_|}!

(31

The presence of fluctuating electric and magnetic fields,nere the unperturbed evolution operatigtdt is defined in

SE=-Vép-cl90A, SBB=V X A,

where ¢ and A are the perturbed scalar and vector poten

Eqg. (17) and the Vlasov distributiofr is decomposed as
=Fo(l,7=&t)+edF. The fast-time-scale evolution equation
shows, on the one hand, how the perturbed Vlasov distribu-

tials, respectively, implies th_at th_e three unperturbed invariioy sE evolves under the influence of electromagnetic per-
ants(Jg, &,Jg) are no longer invariants. The perturbed elec-y,rhation fields. The slow-time-scale evolution equation, on
tromagnetic potentials introduce perturbations in  theyne other hand, shows how the background distribufign

relativistic guiding-center Lagrangian@8): Ly—Lg+dL,
which, to first order in the perturbed potentials, yields
q e
BL="53A (Xo+ po) ~ A8y (23)
where the notatiod,.x is defined in Eq(21). As a result of
the magnetic perturbatiofthe first term in Eq.(23)], the

relativistic guiding-center Poisson brack@i) is also per-
turbed unless we define the perturbed Hamiltontehas

H=-4d= Q<5gc¢— %%ﬁ) - (%VJ_ OgA L. (24

The destruction of the three unperturbed guiding-center in-
variants is expressed in terms of the perturbed guiding-center

HamiltoniansH and theunperturbedPoisson brackgtl0) as

83g={3q 8H} = - %, (25)
- _ _(29_d

58"{8’5H}"<at dt)éH, (26)
cild:{Jd,éH}:—%, (27)

where the unperturbed time evolution operatigfdt is de-
fined by Eq.(17), while the remaining perturbed guiding-
center Hamilton’s equations are

6’5:{5,514}:<i+w63>514,

) (28)

changes as a result of wave-particle resonances. Following
our previous work'Paper ), we now proceed with the sepa-
ration of the perturbed guiding-center Vlasov distribution

dFq

OF =—06H + 6G

P (32

in terms of theadiabatic part of 6F (the first term and the
non-adiabaticpart of 5F (the second term which explicitly
represents resonant wave-particle effects. The fast-time evo-
lution equation for the non-adiabatic pafG is obtained

from the linearized Vlasov equatiaiyoF/dt=-4l - dFy/Jl as
dpG _ codF _ IFochdH _ (a_Foi Lol
dt T\ ddgdp 3yl

dt de dt

IFq 0 ~
- 0= |oH = FoH,

de ot (33

where the perturbed Hamilton’s equations fodl
=(8dy, 6, 8g) are given in Eqs(25—27), and we have de-
fined the operatof.

A. Slow-time evolution

Since the guiding-center background distributigg is
quasi-staticon the wave time scale and is independent of the
azimuthal anglep and the gyro-angle/, we introduce an
averaging operatiofdenoted a$ - -) and referred to awave
averaging with respect to the fast wave-time-scale, the azi-
muthal angle, and the gyro-angle, with the property
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Fo=Fo(l;7=€¥). (34)

Applying the wave-averaging procedure on Egfl), we ob-
tain

dFo_ __1 J
E_ ({6F, 8H}) j{al,[J(éFél)]

J_ —
+—[J(F )] ¢, 35

—L( >]} (39
where the perturbed Vlasov distributidf and the perturba-
tion Hamiltonian H have zero wave-average8tE=0=45H

and expressions foﬁli:(&]g,ﬁ's,&]d) and 65 are found in
EQs.(25—27) and(29), respectively.

When the slow-time evolution equatiof85) for the
guiding-center background distributiof, is expressed in
terms of the non-adiabatic pasG of the perturbed guiding-
center distribution, we findafter some algebjya

el '{w“@]ﬁﬁ@]
2 )

dp
( aéH)] a{ae( (?5H)
+ol 66— || -—| —| 86—
s ds| qly| de

P o —
T2 92 (mz)] }

whereo=v,/|v)|=+1 and we made use of the Liouville iden-
tities (14) as well as the identities

A

de (36)

(8Fa,0H) = (8Gd,oH), (Fd,oH) = (8Gd,oH).

The slow-time evolution equatio(86) for the background

distribution Fy contains terms associated with exact deriva-

tives in invariantl -space(as expectedplus a term involving
parallel spatial gradientéh-V=4/ds) along magnetic field
lines. Since the background distributifg is independent of
the parallel spatial coordinate (i.e., dFy/ds=0), we must

remove the parallel-gradient terms on the right-hand side of

Eq. (36) by introducing a second averaging operation.

B. Bounce averaging and Fourier decomposition

A. J. Brizard and A. A. Chan

su
T:Ef Jds.
o s

The bounce-average operation defined here yields the fol-
lowing identities:

19 _
<3(9—5[J<--->1> =

<ﬁw< >1> peet LR

Hence, by bounce averaging the slow-time evolution equa-
tion (36) while using these identities, we obtain

9o

To o 2 L (dGal),

Tl (39

where we note thatsl')=0 and the bounce period, now
appears as the new Jacobian.

We now introduce the Fourier decompositi@ssuming
a discrete frequency spectrufm,} for the waves

o)

oH KM=\ SHme(s,051)

Cnei(s,031)
expi(me + €{ — wt)

(39)

so that the fast-time evolution equatig®83) for the non-
adiabatic partyG can be written as

g - .-
[Ua_s_ (@ = Mag = €wc):| Gk = L Gk = 1F OHmek,
(40)

where the differential operato% [defined in EQ.(33)] be-
comes

JF
+094

@)
ady '

fﬂi]-‘=i( P (41)

9y

Substituting the Fourier decompositigB9) into Eq. (398),
with Egs.(25) and(27), respectively, we find

(8G83y) = - E“(i IM(8G e OH i) (42)
(8G8Igy =~ >, MIM(GmudHmu)- (43)

m,€,k

After performing various integrations by parts using Egs.

To remove the parallel-gradient terms on the right-hand26) and(33), we also find

side of Eq.(36), we introduce the bounce averaging opera-

tion

sy
ds J(--+),
SL

-is

To o

(37)

where 7=1/[v,| is the Jacobian introduced abowg(l) and

sy(l) are the turning points where the trapped patrticle’s par-

allel velocity v, vanishes,., denotes a sum over the two
possible signs of,=+|v,|, and 7, denotes the bounce period,

moe{[leel)
[l ()

== > o IM(CmekdH i) (44)
m, ¢,k

where we used the |dent|(‘{(]-‘6H)6|-|> 0. We note that Egs.
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(42«44 all involve sums containing the term

Im(éGWkélﬁ-T;}@k), so following our earlier workPaper } we
introduce thequasilinear potential

oA | = (5 + i5>V 0
L=—\ B aﬁsa . (50)

Hence, the parallel component of the perturbed magnetic

T ek = F 1 IM( G kM (45)  field is
so that we may replace 0B, = Bai(éﬂ * a?)’ D
(B = Tl €22 + i 20+ 20} (a6 v >
M{OGmecdHmeid = e 33, RUPR m(de (46) while the parallel component of the perturbed electric field is
i A 196A oD
into Eqs.(42)—(44). SE,=-b- (V S5+ ——) =——, (52)
c at s
o N - where 50 =8¢p+c 19,6a denotes the effective perturbation
C. Relativistic quasilinear diffusion tensor scalar potential. Note that the Fourier components of the per-
By substituting Eqs(42)—(44) and(46) into Eq.(38), we  turbed parallel electric and magnetic fields are given as
obtain the relativistic quasilinear diffusion equation 35D 9 Wy
OB jmk=~ == —| 0Pmk—1— Sam], (53
IFo(l,7) li( i Foll ,r)) 7 95 s c
o rpdll PR g ' 25
. A mk
where the invariant coordinates are the gyro-actibaly, OBymi= |mB< Bt a— ) (54)

the particle guiding-center kinetic enertd= e, and the drift

action|3=J,. In Eq.(47), the relativistic quasilinear diffusion As in Paper ;" it is possible to find expressions for the

tensorDg, has the following symmetric form: perturbation potential®¢n, dam, and 6By in terms of
2 o, €m electric covariant componentsE; = 6E-dX and mag-

) netic contravariant componend,,,.= B V /.
DQL = E wk€ Wy (J)km mek' (48)

m, ¢,k
me My M B. Fourier-Bessel expansions

Note the simplicity of the quasilinear coefficient matdy, Using the gauge condition introduced in the previous

when expres_sed in terms_ _of the invariant coordindtes section, the perturbation Hamiltonig24) becomes
=(Jg,&,Jg). Since the quasilinear transport of trapped par-

ticles (e_.g., see Ref. )2_|s often discussed in terms of the SH =Q<5gc¢‘ v 9. gca) + ng v lﬂ( 85,8
equatorial pitch angle instead of the gyro-actignan alter- cds

native representation of the quasilinear coefficient matrix ex- P

pressed in terms of the equatorial pitch-angle instead of the + a—5gca). (55)
gyro-action is presented in Appendix A. Although the pitch- Js

angle formulation will facilitate comparison with earlier we now consider the perturbation potential

works, however, the simplicity of the quasilinear coefficient _

matrix in Eq.(48) is lost. XX +pt)= % e Kox(X +p),

which, using Egs(21) and (22), yields the azimuthal-angle
IV. QUASILINEAR POTENTIAL Fourier expansion

To complete the derivation of the relativistic quasilinear — ¢ im P
e . . X +p)= €M exp(—insin
diffusion tensoDg, , with components given by E¢48), we XX+ p) 2 [exp=i7sing

m=—
must now solve for an explicit expression for the quasilinear .
potential " . + COS{N) Sxmid #,9)], (56)
where
A. Guiding-center perturbation Hamiltonian n= m£ N = Az,b(i - ai). (57)
R’ oy s

In the present workas in Paper'f), we use the gauge i
condition A - V ¢=0 so that the perturbed vector potential is We note that the argumeitis a differential operator acting

written as only on the perturbation fields.

SA = 6AVs— 88V y, (49) ties:Next, we introduce the following Bessel-function identi-
where 6A=ddalds denotes the parallel component of the o
el L S L
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o0

In summary, the Fourier-Bessel components of the perturba-

exp(cosg)l): > exp(ij’g)lj,(f\), (590  tion Hamiltonian(55) are
j'=- -
. = _ )] 9SG OBymek
whereJ; andl;, denote the Bessel and modified Bessel func- ~ SHme = 0| Sbmec— c s 7 Jyoc , (63
tions of orderj andj’, respectively, and
L - w where
— e““( > e‘”'?Jj(n)>( > e”'flj,(i))dg ” “
S ~ (O \S
= Tt ( m): S s 200)
s Omek j=— Samd 1,9)
= .E Jilje- (60) B - ) )
a OBjmek = E (‘ —Jj'(ﬂ))|j+e(7\)53mk(lﬁys)- (65
The Fourier gyroangle expansion of the generic perturbed jze N7
potential(56) is, therefore, expressed as The Fourier-Bessel componentsl (s, ;1) of the pertur-
o bation guiding-center Hamiltonian can now be used explic-
X +p)= > dmetd itly in the expression for the quasilinear potentid5).
m,¢=—w

” A C. Solution of fast-time evolution equation
> Ji(Mi+e\N) | SXmid 14,9)

j:—w

Following an approach detailed in Paper I, we remove

o the o-dependence Qﬂ:]m(k(s, o;1) by introducing a new per-
= > dmertsy ., (61)  turbation Hamiltonian
m,¢=—o

& 97 e a
where the Fourier-Bessel compone@fg,«(s; |) are func- HKinere = OHrmac+ CL‘&’Wk-q&DWkHC(mwd

tions of the parallel spatial coordinateand the invariant
coordinated =(Jg,&,Jg).

Lastly, using the expressian4) for 5§”m€k, the Fourier-
Bessel expansion of the third tenwn - 5A | in the perturba-
tion Hamiltonian(55), with A, given by Eq.(50), is pro-
gressively transformed as follows. First, we begin with

OBimek
-

+ L) S + Jgwe (66)

where the differential operatcft is defined in Eq(40) and

5a>mzk = 5’$m€k = i(w/C) Sarme = — j 6EHm€k ds.

. : ! ( : )
-V, -0A «=——|V¢lv, sing| 6B+ a—odua
c b Tk c| o, sing| 36 g~ Note that, as in Paper(Appendix B), the new perturbation

Hamiltonian can also be expressed as

g(me+td) SB
:iwCRpL Siﬂ{ (E JJII"'V) émk, = -
mek = mc(mwd e~ wy) B S+ Jgwe B
where Eqgs.(54) and (61) were used, with the definitions
|Vy|=BRandp, =yMv ,. Next, by substituting sig=(e* iq ~
-e7%)/2i, we obtain + EéEWk, (67)
q gmetto in terms of components of the perturbed electric and mag-
-=Vv, -6A =R live(J;
o kT e pl% 2 [ J- jrelJjna netic fields.
We also introduce the new nonadiabatic pé@;,, de-
‘SBHmk ;
_Jj_l)] , fined as
B
=, _ = 9
where thej-summation was re-arranged. Lastly, we use the Gk = 5Gmfk+'cj'—5amfk (68)

Bessel recurrence relatiod;_;(7)—Jj.1(n)=27" Ji(n) to _
obtain so that the fast time scale evolution f66G,,, is obtained
from Eg.(33) as

- gvi : 5Aik:‘-]gwc2 é(m¢+€§)l2 |j+€(;\) ~ =, a = g - . o
c m,{¢ j ,Cbc!mek:ﬁbt;m(gk+lgf£5&m(k:|f 5Hm{fk

2 ’ 6BHmk
x| = =3 () |3 q- -
n J B + |E£5&m€k = Ifél(m{(k! (69)
=Jyc > eNmMOM_ (62)  Where we used the fact that the differential operdﬁanom—
m, =0 mutes withF.
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The rest of the analysis leading to the solutiorﬂé"w,(
in terms of the modified perturbation Hamiltonia,, fol-

lows Paper [ First, we note that the transformation

Relativistic quasilinear diffusion in axisymmetric... 4227

)

o= 2 78 ox—m '<wm>)|<5}zm€kcos‘9>|2-

n=-o

(78

(5ém€k15ﬁm€k)_)(&~3r’mkr‘s|2m€k) leaves the quasilinear po- Note that wave-particle resonances involve harmonics of the

tential invariant:

ek = F 1 IM(8G, 1 5K i) (70)

as follows from properties of the averaging operatitins))

and the differential operatof. From Eq.(61) of Paper |,
where we now replacenwy— (Mwy+fw), the solution of
Eq. (69) is written as

s dS’ i U -~

_e—IO'H(S )éKmfk(S,)

6(SGWK::.7¥§UH i(T
s 1Vl

- %’(cot@)(&kmgk coso) + <5I~<m€k sin 0))} ,

(72)
where thes-dependent anglé(s) is defined as
°ds , ,
o(s;1) = | (o= May(s) —Cws)), (72
s |Uu|
while thes-independent angl® is defined as
To
o) = E(wk = ) —~M{wg)). (73

Here,(w.) and(wgy) denote the bounce-averages of the gyro
frequency and drift-frequency, respectively; in Appendix B,
we present a simple expression for the bounce-averaged dri
frequencywy) in terms of the bounce-averaged radial gradi-

ent (dw./ 6Jy).

Using simple relations derived in Paper |, we ultimately

find the quasilinear potentidl, ., given as
Pex(1) = 2 K(s:1)cos0(s; )Am(= cot®).  (74)

Here, we note that

Jeot0= X (w= o)~ Mo ~nay) ™, (75)
n=—w
where w,=27/ 7, denotes the bounce frequency.
Lastly, using the Plemelj formula, we find
%Im(— cot®) = S mdlw-m -(w,)), (76)
n=-oc
wherem=(¢,n,m) and
m (o) = (o) + Nw, + M{wg). (77)

Using these expressions, the quasilinear poteriiid) is
written as

bounce-averaged gyrofrequenciw.,) and the bounce-

averaged drift-frequencywg). By combining these results
into Eq. (48), we finally obtain the expression for the rela-
tivistic quasilinear diffusion tensor

2 o, (m
Dou=2 | @l of om |[78w-m (o)
.k mé Mawy m2

X [{ K nexc cOS )], (79

The structure of the relativistic quasilinear diffusion tensor
(79) clearly shows that, for arbitrary values of gyro-harmonic
and drift-harmonic number& ,m) and non-vanishing wave
frequency w,, off-diagonal quasilinear transport cannot be
neglected(see Appendix A for a brief discussion of off-
diagonal quasilinear transport coefficigntdlote also that
wave-particle resonances, in fact, involve bounce-averaged
cyclotron and drift frequencies, not their local expressions as
might be expected.

V. SUMMARY

The present work has presented a complete derivation of
the relativistic bounce-averaged quasilinear diffusion equa-
tion associated with arbitrary-frequency electromagnetic
fluctuations in axisymmetric geometry. The main results are
the relativistic quasilinear equation, Ee7), and the corre-
sponding diffusion tensor, E¢79), Whereé’Rm{;k is given by
lTi[q.(66) or Eq.(67). In Eq.(79) thes-dependent anglé&(s) is
given by Eq.(72), {...) denotes bounce-averaging, and the
Fourier-Bessel componentdenoted by a tildeare defined
in Eq. (61). The quasilinear diffusion tensor is also presented
in energy, pitch-angle coordinates in Appendix A.

Future work will include a comparative study with pre-
vious analytical models of pitch-angle and energy
diffusion,”® and with calculations of radial diffusion
coefficients®>® plus generalization to allow non-
axisymmetric unperturbed electric and magnetic fields. In re-
lated work, a numerical implementation of the present rela-
tivistic quasilinear diffusion equation in a multi-dimensional
simulation code is being developéd collaboration with Dr.
Jay Alber, including an investigation of the importance of
off-diagonal quasilinear diffusion coefficients in non-
axisymmetric magnetic geometries.
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APPENDIX A: EQUATORIAL PITCH-ANGLE A @i Mk

FORMULATION =
Do= 2 | ®dmek  of oM L, (A8)
Since quasilinear transport is often discussed in terms of ME\ M\ My m?
the equatorial pitch-angle instead of the gyro-acﬂgﬁ we

introduce the cosine of the equatorial pitch an@lenoted) \;vshere the pitch-angle coefficienty and\m are defined

defined as
2 2\2 2 2
_p0_< Jywq0 )1/2 A= 55 [Py + (1= )2wf + MPofy), (A9)
Jpedg=—"=1-—T"2"—1] | Al J:w
£(Jg,&,J9) o o(y+ 112 (A1) £Wco
where the parallel momentum,y and the rest-mass gyro- )\mfk:i[€wco—(l—§2)wk+ Mo . (A10)
frequencywqy=qBy(#)/Mc are evaluated on the equatorial £Wco

plane. From this definition, we obtain the differential relation Note that, while the diagonal coefficie@9) cannot vanish
(since it is strictly positivg the off-diagonal coefficient
dé=— ! [weodJy + wgoddg = (1 = £9)de], (A2)  (A10) may be small when evaluated at the wave-particle
Jeweo resonancew,={{w.) +Nwp+mM{wy). Further discussion of the
importance of these off-diagonal quasilinear transport coef-
ficients is, however, outside the scope of the present work
and will be a subject for future work when non-axisymmetric

where the drift frequency

aa)co . . .
wgo = Jg p (A3)  magnetic geometries are also considered.
d
defines an equatorial drift frequengsee Eq(B2)] and APPENDIX B: BOUNCE-AVERAGED DRIFT
FREQUENCY
Jdée,d9) = PPio (A4) In this appendix, we derive an explicit expression for the
Mago bounce-averaged drift frequency based on the definfiGn

is the Jacobian associated with the substitutign- ¢ (and ~ s( Jg oo cJ@adw; _ clp)| aa)
thus J; has units of action Using the differential relation {g) = f ol 83s ol as  q s/
(A2), the unperturbed guiding-center evolution of the equa-
torial pitch angle isfozo

The perturbed pitch-angle Hamilton’s equation &ris ~ Using the identity

(B1)

expressed as M@ &( ol ) CaM_ﬁ(E| |a)
] P P N q a5 as\q ) T q s as\g™
o0& = we T twgT -+ (1-8)| — -~ | |H.
‘ngCO (9§ a(P ot dt CJga%
- : . Aloy| ds
The differential operato# becomes
which follows from the definitior(9) for p,, we find that the
- aFO wg g\ d  L1dFgd [dFg second and third terms in E¢B1) cancel each other and,
F= 3y ngco 9 ) dg * Jp 9€ ¢ N\ e hence, only the first term in E¢B1) remains. The bounce-

averaged drift frequency is, therefore, given as

(A5) Jg do dwe
o = J S<|U|| 3Jd) <Ed> (B2

Relativistic quasilinear diffusion equatiad7) can also be
written in terms of the invariant coordinatés (¢,¢,Jy),

_1-9 «9_Fo)ﬁ
Jeweg 9

Based on this expression, we defined in E43) the equa-
torial drift frequencywgy.

Fo_ 1 0 — 9F, . An alternative expression fdwg) is obtained by intro-
or  Jemoa (JfTbDQL O’F)' (A6)  ducing the bounce action
ds
whereJ; is defined in Eq(A4) and the components of the Jb:% f Z.,|p\\| (B3)

new quasilinear diffusion tensor are defined by the relation
and the bounce frequency

S A (9“ 27 (33,\ 7}
b

The new quasilinear diffusion tension is, therefore, expresseso that the bounce-averaged drift frequeg) can also be
as expressed as
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