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A relativistic bounce-averaged quasilinear diffusion equation is derived to describe stochastic
particle transport associated with arbitrary-frequency electromagnetic fluctuations in a nonuniform
magnetized plasma. Expressions for the elements of a relativistic quasilinear diffusion tensor are
calculated explicitly for magnetically trapped particle distributions in axisymmetric magnetic
geometry in terms of gyro-drift-bounce wave-particle resonances. The resonances can destroy any
one of the three invariants of the unperturbed guiding-center Hamiltonian dynamics. ©2004
American Institute of Physics. [DOI: 10.1063/1.1773554]

I. INTRODUCTION

Understanding the phase-space transport of magnetically
trapped relativistic electrons is an intrinsically interesting
general problem, and it is an especially important problem in
magnetospheric plasma physics because these energetic par-
ticles can damage spacecraft electronics and they present a
radiation hazard to astronauts. The quasilinear theory of such
anomalous transport processes is based on resonant wave-
particle interactions in which characteristic wave frequencies
match one or more of the orbital frequencies associated with
the gyration, bounce, and drift motion of charged
particles.1–3 In particular, diffusion due to drift-resonances
with low-frequency magnetohydrodynamic(MHD) waves4–6

and diffusion due to cyclotron-resonances with various high-
frequency waves7–10 are frequently cited as important trans-
port mechanisms for relativistic electrons in Earth’s mag-
netosphere. Previous work on these transport mechanisms
has typically been restricted to either the low-frequency
wave interactions, which may break the second and third
invariants, or the high-frequency wave interactions, which
may break the first and second invariants. However, there has
been little work on a unified theory in which all the interac-
tions can be considered together.

Our previous work11 (henceforth referred to as Paper I)
investigated relativistic quasilinear diffusion transport due to
low-frequency electromagnetic fluctuations, which preserved
the first adiabatic invariant, based on the low-frequency rela-
tivistic gyrokinetic Vlasov equation.12–14In the present work,
we modify the low-frequency gyrokinetic formalism to allow
for arbitrary-frequency electromagnetic fluctuations(and,
thus, allow for processes which break any one of the three
invariants) and retain full finite-Larmor-radius(FLR) effects
associated with the electromagnetic fluctuations. Although
FLR effects are not important for interactions of relativistic
electrons with MHD waves, they are crucial for interactions
with cyclotron-frequency waves.7,8

A. Canonical quasilinear formalism

The derivation of a quasilinear diffusion equation in ca-
nonical action space(with coordinatesJ) was first performed
by Kaufman,1 in which the background Vlasov distribution
F0sJ ,td evolves on a slow time scalest=e2td determined by
the amplitude(ordered by the dimensionless parametere) of
the electric and magnetic fluctuations. The quasilinear diffu-
sion equation in action space is given in its general form as

]F0

]t
;

]

]J
·SDCQL ·

]F0

]J
D , s1d

where the action coordinatesJ may either beexactinvariants
(corresponding to exact symmetries) or adiabatic invariants
(corresponding to approximate symmetries). The canonical
quasilinear(CQL) diffusion tensor1,11 is expressed as

DCQL = o
m,k

mmfpdsvk − m · VdudH̃mku2g, s2d

wheredH̃mk denotes the Fourier component of the perturba-
tion Hamiltonian dH with a discrete frequency spectrum
(represented by the wave frequencyvk) and m ·V=miVi

(summation over repeated indices is, henceforth, implied),
with Vi =]H0/]Ji denoting the unperturbed orbital frequency
derived from a HamiltonianH0 averaged over all fast orbital
time scales.

Expression(2) clearly establishes the paradigm of qua-
silinear transport theory: wave-particle resonances(where
vk=m ·V) introduce explicit violations of the invariance
(exact or adiabatic) of action coordinates leading to stochas-
tic transport in action space. Note that the canonical quasi-
linear diffusion tensor(2) can be written

DCQL = o
m,k

dm,k
sCQLdGm,k

sCQLd, s3d

in terms of the canonical quasilinearcoefficient matrix
dm,k

sCQLd=mm and the canonical quasilinearpotential Gm,k
sCQLd

=pdsvk−m ·VdudH̃mku2. Here, thedimensionalityof quasi-
linear transport is represented by the dimensionality of the
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coefficient matrixdm,k and theuniversality of quasilinear
transport is represented by the fact that a single quasilinear
potentialGm,k describes quasilinear transport along different
action coordinates.

B. Organization of paper

The remainder of the paper is organized as follows. In
Sec. II, we introduce the unperturbed and perturbed relativ-
istic guiding-center equations in terms of magnetic coordi-
natessc ,w ,sd associated with an unperturbed axisymmetric
magnetic field configuration. The invariant coordinatesI
=sJg,« ,Jdd in axisymmetric magnetic geometry are the rela-
tivistic guiding-center gyro-actionJg, the relativistic guiding-
center kinetic energy«, and the guiding-center drift action
Jd=qc /c. Here, energy« is used instead of the bounce action
Jb to ensure that all three of the invariant coordinates are
local (i.e., they depend on local properties of the background
plasma). The perturbation guiding-center HamiltoniandH,
expressed in terms of the perturbation electromagnetic poten-
tials sdf ,dAd causes the destruction of the unperturbed in-

variantsI (i.e.,dİ =hI ,dHjÞ0, whereh,j represents the Pois-
son bracket) and leads to stochastic quasilinear diffusion in
invariant I -space due to resonant wave-particle resonances.

In Secs. III and IV, an explicit expression for the relativ-
istic quasilinear diffusion equation(1) in axisymmetric mag-
netic geometry in terms of the invariant coordinates
sJg,« ,Jdd is derived. In Sec. III, the quasilinear coefficient
matrix dmk is derived and then, in Sec. IV, the quasilinear
potential Gm,k. The present derivation follows closely the
derivation found in Paper I.11 We summarize our results in
Sec. V and discuss applications.

Since quasilinear diffusion is often described in the lit-
erature(e.g., see Ref. 2) in terms of the equatorial pitch angle
instead of the gyro-action, the corresponding relativistic qua-
silinear diffusion equation(1) is presented in Appendix A. In
particular, we show how the quasilinear coefficient matrix
transforms when the relativistic guiding-center gyro-action
Jg is replaced with the equatorial pitch angle. Lastly, Appen-
dix B presents two expressions for the bounce-averaged drift
frequency which might be useful for computational applica-
tions.

II. RELATIVISTIC GUIDING-CENTER DYNAMICS IN
AXISYMMETRIC MAGNETIC GEOMETRY

We begin our analysis of relativistic quasilinear transport
in axisymmetric magnetic geometry by first providing a gen-
eral representation of axisymmetric magnetic geometry in
terms of magnetic coordinates(also known as Euler or
Clebsch potentials). Next, we present the equations of rela-
tivistic guiding-center Hamiltonian dynamics in unperturbed
and perturbed axisymmetric magnetic geometry. Unper-
turbed guiding-center Hamiltonian dynamics establishes the
existence of three invariants, which are then destroyed by
arbitrary-frequency electromagnetic perturbation fields.

In the spirit of perturbation theory, we assume that elec-
tric fields are not part of the quasi-static background fields
(i.e., electric fields are automatically viewed as perturbation
fields) and any axisymmetry-breaking magnetic fields are

viewed as zero-frequency magnetic perturbation fields. The
validity of these assumptions will be checked in future work
when an alternate model including a more realistic nonaxi-
symmetric magnetic geometry and a background electric
field is considered.

A. Axisymmetric magnetic geometry

The background magnetic field in axisymmetric mag-
netic geometry can be expressed in terms of magnetic coor-
dinatessc ,w ,sd as

B = =c Ã = w = Bsc,sd
]X

]s
, s4d

where c denotes the magnetic(radial) flux function (i.e.,
B·=c=0), the azimuthal anglew is an ignorable coordinate
(i.e., in axisymmetric magnetic geometry, unperturbed scalar
fields are independent ofw), and s is the parallel spatial
coordinate along a single magnetic field line labeled by
sc ,wd.

The magnitudeBsc ,sd of the magnetic field, on the one
hand, is defined from Eq.(4) as B= =c3 =w ·=s and
B−1sc ,sd denotes the Jacobian for the transformationX
→ sc ,w ,sd. The local magnetic unit vectorb̂=B /B=]sX, on
the other hand, can be expressed as

b̂ = =s+ asc,sd = c. s5d

Here the scalar field

asc,sd = b̂ ·
]X

]c
= −

=c · = s

u = cu2
,

which characterizes the nonorthogonality of the coordinates

sc ,sd, is required to ensure that=3 b̂Þ0 and is associated

with magnetic curvature11 through the relation ]sb̂
=s]sad=c. We note that, for an axisymmetric dipole mag-
netic field (which is curl-free), we can writeB= =xsc ,sd
and, thus, using Eq.(5), we find ]x /]s=B and]x /]c=aB.

Next, we define the radiusRsc ,sd;u=wu−1 (which mea-
sures the distance to the symmetry axis) and obtain the ex-
pressionu=cu=BR from Eq. (4). We can, thus, define the
following perpendicular unit vectors

ĉ = sBRd−1 = c, andŵ = R= w, s6d

such that the unit vectorssĉ ,ŵ ,b̂d form a right-handed set of

unit vectors(i.e., b̂=ĉ3ŵ).

B. Unperturbed guiding-center dynamics

The unperturbed relativistic guiding-center dynamics of
a charged particle of massM and chargeq in axisymmetric
magnetic geometry is represented in terms of the magnetic
coordinatessc ,w ,sd, the unperturbed relativistic guiding-
center kinetic energy

« = sg − 1dMc2 = ÎM2c4 + 2Mc2Jgvg + pi
2c2 − Mc2, s7d

wherevg=qB/Mc denotes the rest-mass gyro-frequency and
pi=gMvi denotes the parallel component of the relativistic
kinetic momentum, the relativistic guiding-center gyro-
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actionJg= up'u2/ s2 Mvgd, and the gyro-anglez. The unper-
turbed relativistic guiding-center Lagrangian is written as

L0 = Jdẇ + pisṡ+ acd + Jgż − «, s8d

where A =c=w is the vector potential associated with the
magnetic field(4) and Jd=qc /c denotes the drift action,
while, using Eq. (7), the magnitude of the relativistic
guiding-center parallel momentum is

upiu = gMuviu = Î«2/c2 + 2Ms« − Jgvgd. s9d

The unperturbed relativistic guiding-center Poisson bracket
h,j, on the other hand, is expressed in terms of two arbitrary
functionsF andG on guiding-center phase space as

hF,Gj =
]F

]z
S ]G

]Jg
+ vc

]G

]«
D − S ]F

]Jg
+ vc

]F

]«
D ]G

]z

+
]F

]w
S ]G

]Jd
+ vd

]G

]«
−

ca

q

]G

]s
D − S ]F

]Jd
+ vd

]F

]«

−
ca

q

]F

]s
D ]G

]w
+ viS ]F

]s

]G

]«
−

]F

]«

]G

]s
D , s10d

wherevc;g−1vg denotes the relativistic gyro-frequency and
the azimuthal drift frequency is defined as

vd = JgS ]vc

]Jd
−

ac

q

]vc

]s
D +

pi
2

gM

]a

]s
. s11d

The Jacobian for the guiding-center transformation

sx,pd → Za = sJd,w,s,«,Jg,zd

is J=1/uviu, whereuviu is obtained from Eq.(9). We note that
the Poisson bracket(10) can also be expressed in phase-
space divergence form as

hF,Gj =
]F

]ZaJab ]G

]Zb =
1

J
]

]ZaSJFJab ]G

]ZbD , s12d

whereJab=hZa ,Zbj denotes the elements of the antisymmet-
ric Poisson-bracket tensor and we used the Liouville identi-
ties sb=1, . . . ,6d

]

]Za sJJabd = 0. s13d

These identities follow from the divergenceless property of
the Hamiltonian flow(associated with Liouville’s theorem):

0 =
]

]Z
· Ż =

1

J
]

]Za
sJŻad =

1

J
]

]ZaSJJab ]H

]ZbD
=

1

J
]

]Za
sJJabd

]H

]Zb + Jab ]2H

]Za]Zb .

Since the Poisson matrixJab is anti-symmetric, the term
Jab]ab

2 H vanishes, and we find

0 =
1

J
]

]Za
sJJabd

]H

]Zb ,

which must be true for all HamiltoniansH and, thus, we
obtain the Liouville identities(13). In particular, the Liou-
ville identities forw andz, respectively, are

]

]Jd
S 1

uviu
D −

]

]s
S ca

quviu
D +

]

]«
S vd

uviu
D = 0,

s14d
]

]Jg
S 1

uviu
D +

]

]«
S vc

uviu
D = 0,

which follow from the definitions forvc, uviu, and vd. We
further note that although the magnetic coordinatec and the
drift action Jd are simply related in axisymmetric magnetic
geometry, this simple relation is destroyed by nonaxisymme-
try; we, henceforth, usec andJd separately as follows:Jd is
used whenever dynamics is concerned whilec is used when-
ever magnetic coordinates are concerned.

As in Paper I,11 the unperturbed guiding-center Hamil-
ton’s equations, expressed in terms of the coordinates
sJd,w ,s; « ,Jg,zd and the unperturbed relativistic guiding-
center HamiltonianH0=«, include the magnetic-coordinate
components of the relativistic guiding-center velocity

J̇d0 = 0, ẇ0 = vd, ṡ0 = vi s15d

and the velocity-space guiding-center equations

«̇0 = 0 = J̇g0, ż0 = vc. s16d

Thus, the drift actionJds=qc /cd, the kinetic energy«, and
the gyro-actionJg are the three invariants of unperturbed
relativistic guiding-center motion in axisymmetric magnetic
geometry. From these unperturbed Hamilton’s equations we
construct the unperturbed time evolution(Vlasov) operator

d0

dt
;

]

]t
+ vi

]

]s
+ vd

]

]w
+ vc

]

]z
. s17d

In the absence of electromagnetic fluctuations, the unper-
turbed Vlasov equationd0F0/dt=0, therefore, implies that
the unperturbed(background) Vlasov distributionF0sI d is a
function of the three guiding-center invariantsI =sJg,« ,Jdd
associated with axisymmetric magnetic geometry. In the
present work, in order to correctly account for wave-particle
gyroresonance effects, we retain full finite-Larmor-radius
(FLR) effects associated with electromagnetic fluctuations
and, thus, we need an expression for the gyroradiusr. The
gyroradius vectorrsX ,« ,Jg,zd is defined locally in terms of
the magnetic coordinates as

r = rscoszĉ − sinzŵd, s18d

where the unit vectorssĉ ,ŵd are defined in Eq.(6) and the
magnituder=v' /vc of the gyro-radius vectorr is given as

rsJg;c,sd =Î 2Jg

Mvgsc,sd
. s19d

In Sec. IV, the spatial dependence of the perturbed elec-
tromagnetic fields(in guiding-center phase-space) will in-
volve the combinationci +r ·=ci, which denotes the posi-
tion x=X +r of a particle in terms of the guiding-center
magnetic coordinatesci =sc ,w ,sd. Here, using Eqs.(6) and
(18), we find

r · = c = ru = cucosz ; Dc cosz,
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r · = w = − ru = wusinz ; − sr/Rdsinz, s20d

r · = s= − ar · = c ; − aDc cosz,

so that a generic perturbation scalar field

dxsX + r,td = expsr · = ddxsX,td

; dgcxsc,w,s;«,Jg,z,td s21d

can be expressed as

dxsX + r,td = expF− S r

R
sinzD ]

]w
+ Dc coszS ]

]c

− a
]

]s
DGdxsc,w,s,td. s22d

This expression will be used later in obtaining Fourier-Bessel
expansions in gyro-ranglez for the electromagnetic pertur-
bation fields.

C. Perturbed guiding-center dynamics

The presence of fluctuating electric and magnetic fields

dE = − = df − c−1]tdA , dB = = Ã dA ,

wheredf anddA are the perturbed scalar and vector poten-
tials, respectively, implies that the three unperturbed invari-
antssJg,« ,Jdd are no longer invariants. The perturbed elec-
tromagnetic potentials introduce perturbations in the
relativistic guiding-center Lagrangian(8): L0→L0+dL,
which, to first order in the perturbed potentials, yields

dL =
q

c
dgcA · sẊ0 + ṙ0d − qdgcf, s23d

where the notationdgcx is defined in Eq.(21). As a result of
the magnetic perturbation[the first term in Eq.(23)], the
relativistic guiding-center Poisson bracket(10) is also per-
turbed unless we define the perturbed HamiltoniandH as

dH ; − dL = qSdgcf −
vi

c
dgcAiD −

q

c
v' · dgcA'. s24d

The destruction of the three unperturbed guiding-center in-
variants is expressed in terms of the perturbed guiding-center
HamiltoniandH and theunperturbedPoisson bracket(10) as

dJ̇g = hJg,dHj = −
]dH

]z
, s25d

d«̇ = h«,dHj = S ]

]t
−

d0

dt
DdH, s26d

dJ̇d = hJd,dHj = −
]dH

]w
, s27d

where the unperturbed time evolution operatord0/dt is de-
fined by Eq.(17), while the remaining perturbed guiding-
center Hamilton’s equations are

dż = hz,dHj = S ]

]Jg
+ vc

]

]«
DdH, s28d

dṡ= hs,dHj = Svi

]

]«
+

ca

q

]

]w
DdH, s29d

dẇ = hw,dHj = S ]

]Jd
−

ca

q

]

]s
+ vd

]

]«
DdH. s30d

From Eqs.(25) and(27), we note that the gyro-actionJg and
the drift-actionJd are destroyed if the perturbation Hamil-
tonian dH depends on the gyro-anglez and the azimuthal
anglew, respectively. Moreover, the destruction of the gyro-
action invariance leads to the possible loss of trapped par-
ticles while the destruction of the drift-action invariance
leads to radial transport.

III. RELATIVISTIC QUASILINEAR DIFFUSION TENSOR

In this section, we proceed with a two-time-scale analy-
sis of the perturbed Vlasov equation

e2]F0

]t
+ e

d0dF

dt
= − ehsF0 + edFd,dHj, s31d

where the unperturbed evolution operatord0/dt is defined in
Eq. (17) and the Vlasov distributionF is decomposed asF
=F0sI ,t=«2td+«dF. The fast-time-scale evolution equation
shows, on the one hand, how the perturbed Vlasov distribu-
tion dF evolves under the influence of electromagnetic per-
turbation fields. The slow-time-scale evolution equation, on
the other hand, shows how the background distributionF0

changes as a result of wave-particle resonances. Following
our previous work(Paper I), we now proceed with the sepa-
ration of the perturbed guiding-center Vlasov distribution

dF =
]F0

]«
dH + dG s32d

in terms of theadiabaticpart of dF (the first term) and the
non-adiabaticpart of dF (the second term), which explicitly
represents resonant wave-particle effects. The fast-time evo-
lution equation for the non-adiabatic partdG is obtained

from the linearized Vlasov equationd0dF /dt=−dİ ·]F0/]I as

d0dG

dt
;

d0dF

dt
−

]F0

]«

d0dH

dt
= S ]F0

]Jd

]

]w
+

]F0

]Jg

]

]z

−
]F0

]«

]

]t
DdH ; F̂dH, s33d

where the perturbed Hamilton’s equations fordİ
=sdJ̇g,d«̇ ,dJ̇dd are given in Eqs.(25)–(27), and we have de-

fined the operatorF̂.

A. Slow-time evolution

Since the guiding-center background distributionF0 is
quasi-staticon the wave time scale and is independent of the
azimuthal anglew and the gyro-anglez, we introduce an
averaging operation[denoted ass¯d and referred to aswave
averaging] with respect to the fast wave-time-scale, the azi-
muthal angle, and the gyro-angle, with the property
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F̄0 = F0sI ;t = e2td. s34d

Applying the wave-averaging procedure on Eq.(31), we ob-
tain

]F0

]t
= − shdF,dHjd = −

1

JH ]

]I i fJsdFdİ idg

+
]

]s
fJsdFdṡdgJ , s35d

where the perturbed Vlasov distributiondF and the perturba-

tion HamiltoniandH have zero wave-averages:dF̄=0=dH̄

and expressions fordİ i =sdJ̇g,d«̇ ,dJ̇dd and dṡ are found in
Eqs.(25)–(27) and (29), respectively.

When the slow-time evolution equation(35) for the
guiding-center background distributionF0 is expressed in
terms of the non-adiabatic partdG of the perturbed guiding-
center distribution, we find(after some algebra)

]F0

]t
= uviuH ]

]Jd
F 1

uviu
SdG

]dH

]w
DG +

]

]Jg
F 1

uviu
SdG

]dH

]z
DG

+
]

]«
F vc

uviu
SdG

]dH

]z
D +

vd

uviu
SdG

]dH

]w
D

+ sSdG
]dH

]s
DG −

]

]s
F ac

quviu
SdG

]dH

]w
D

+ sSdG
]dH

]«
D −

s

2

]2F0

]«2 sdH2dGJ , s36d

wheres=vi / uviu= ±1 and we made use of the Liouville iden-
tities (14) as well as the identities

sdF]zdHd = sdG]zdHd, sdF]wdHd = sdG]wdHd.

The slow-time evolution equation(36) for the background
distribution F0 contains terms associated with exact deriva-
tives in invariantI -space(as expected) plus a term involving

parallel spatial gradientssb̂ ·==] /]sd along magnetic field
lines. Since the background distributionF0 is independent of
the parallel spatial coordinates (i.e., ]F0/]s=0), we must
remove the parallel-gradient terms on the right-hand side of
Eq. (36) by introducing a second averaging operation.

B. Bounce averaging and Fourier decomposition

To remove the parallel-gradient terms on the right-hand
side of Eq.(36), we introduce the bounce averaging opera-
tion

k¯l =
1

tb
o
s
E

sL

sU

ds Js¯d, s37d

whereJ=1/uviu is the Jacobian introduced above,sLsI d and
sUsI d are the turning points where the trapped particle’s par-
allel velocity vi vanishes,Ss denotes a sum over the two
possible signs ofvi=±uviu, andtb denotes the bounce period,

tb = o
s
E

sL

sU

J ds.

The bounce-average operation defined here yields the fol-
lowing identities:

K 1

J
]

]s
fJs¯dgL = 0,

K 1

J
]

]I i fJs¯dgL =
1

tb

]

]I i ftbks¯dlg .

Hence, by bounce averaging the slow-time evolution equa-
tion (36) while using these identities, we obtain

]F0

]t
= −

1

tb

]

]I i stbkdGdİ ild, s38d

where we note thatkdİ il=0 and the bounce periodtb now
appears as the new Jacobian.

We now introduce the Fourier decomposition(assuming
a discrete frequency spectrumhvkj for the waves)

SdG

dH
D = o

k
o

m,,=−`

` 1dG̃m,kss,s;I d

dH̃m,kss,s;I d
2expismw + ,z − vktd

s39d

so that the fast-time evolution equation(33) for the non-
adiabatic partdG can be written as

Fvi

]

]s
− isvk − mvd − ,vcdGdG̃m,k ; L̂dG̃m,k = iFdH̃m,k,

s40d

where the differential operatorF̂ [defined in Eq.(33)] be-
comes

F̂ → iF = iSm
]F0

]Jd
+ ,

]F0

]Jg
+ vk

]F0

]«
D . s41d

Substituting the Fourier decomposition(39) into Eq. (38),
with Eqs.(25) and (27), respectively, we find

kdGdJ̇gl = − o
m,,,k

, ImkdG̃m,kdH̃m,k
* l, s42d

kdGdJ̇dl = − o
m,,,k

m ImkdG̃m,kdH̃m,k
* l. s43d

After performing various integrations by parts using Eqs.
(26) and (33), we also find

kdGd«̇l =KFSd0dG

dt
−

]dG

]t
DdHGL

=KFSF̂dH −
]dG

]t
DdHGL = −KS ]dG

]t
dHDL

= − o
m,,,k

vk ImkdG̃m,kdH̃m,k
* l, s44d

where we used the identityksF̂dHddHl=0. We note that Eqs.
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(42)–(44) all involve sums containing the term

ImkdG̃m,kdH̃m,k
* l, so following our earlier work(Paper I) we

introduce thequasilinear potential

Gm,k ; F−1 ImkdG̃m,kdH̃m,k
* l, s45d

so that we may replace

ImkdG̃m,kdH̃m,k
* l = Gm,kS,

]F0

]Jg
+ vk

]F0

]«
+ m

]F0

]Jd
D s46d

into Eqs.(42)–(44).

C. Relativistic quasilinear diffusion tensor

By substituting Eqs.(42)–(44) and(46) into Eq.(38), we
obtain the relativistic quasilinear diffusion equation

]F0sI ,td
]t

=
1

tb

]

]I iStbDQL
i j ]F0sI ,td

]I j D , s47d

where the invariant coordinates are the gyro-actionI1=Jg,
the particle guiding-center kinetic energyI2=«, and the drift
actionI3=Jd. In Eq.(47), the relativistic quasilinear diffusion
tensorDQL has the following symmetric form:

DQL = o
m,,,k 1

,2 ,vk ,m

vk, vk
2 vkm

m, mvk m2 2Gm,k. s48d

Note the simplicity of the quasilinear coefficient matrixdmk

when expressed in terms of the invariant coordinatesI
=sJg,« ,Jdd. Since the quasilinear transport of trapped par-
ticles (e.g., see Ref. 2) is often discussed in terms of the
equatorial pitch angle instead of the gyro-actionJg, an alter-
native representation of the quasilinear coefficient matrix ex-
pressed in terms of the equatorial pitch-angle instead of the
gyro-action is presented in Appendix A. Although the pitch-
angle formulation will facilitate comparison with earlier
works, however, the simplicity of the quasilinear coefficient
matrix in Eq.(48) is lost.

IV. QUASILINEAR POTENTIAL

To complete the derivation of the relativistic quasilinear
diffusion tensorDQL, with components given by Eq.(48), we
must now solve for an explicit expression for the quasilinear
potentialGm,k.

A. Guiding-center perturbation Hamiltonian

In the present work(as in Paper I11), we use the gauge
conditiondA· =w=0 so that the perturbed vector potential is
written as

dA = dAi = s− db = c, s49d

where dAi=]da /]s denotes the parallel component of the
perturbed vector potential and the perpendicular components

of the perturbed vector potentialdA'=dA −dAib̂ are

dA' = − Sdb + a
]

]s
daD = c. s50d

Hence, the parallel component of the perturbed magnetic
field is

dBi = B
]

]w
Sdb + a

]da

]s
D , s51d

while the parallel component of the perturbed electric field is

dEi = − b̂ ·S=df +
1

c

]dA

]t
D = −

]dF

]s
, s52d

where dF=df+c−1]tda denotes the effective perturbation
scalar potential. Note that the Fourier components of the per-
turbed parallel electric and magnetic fields are given as

dEimk= −
]dFmk

]s
= −

]

]s
Sdfmk− i

vk

c
damkD , s53d

dBimk= imBSdbmk+ a
]damk

]s
D . s54d

As in Paper I,11 it is possible to find expressions for the
perturbation potentialsdfmk, damk, and dbmk in terms of
electric covariant componentsdEi mk=dEmk·]iX and mag-
netic contravariant componentsdBmk

i =dBmk·=ci.

B. Fourier-Bessel expansions

Using the gauge condition introduced in the previous
section, the perturbation Hamiltonian(24) becomes

dH = qSdgcf −
vi

c

]

]s
dgcaD +

q

c
v' · = cSdgcb

+ a
]

]s
dgcaD . s55d

We now consider the perturbation potential

dxsX + r,td = o
k

e−ivktdxksX + rd,

which, using Eqs.(21) and (22), yields the azimuthal-angle
Fourier expansion

dxksX + rd = o
m=−`

`

eimwfexps− ih sinz

+ coszl̂ddxmksc,sdg, s56d

where

h ; m
r

R
, l̂ ; DcS ]

]c
− a

]

]s
D . s57d

We note that the argumentl̂ is a differential operator acting
only on the perturbation fields.

Next, we introduce the following Bessel-function identi-
ties:

exps− ih sinzd = o
j=−`

`

exps− i j zdJjshd, s58d
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expscoszl̂d = o
j8=−`

`

expsi j 8zdI j8sl̂d, s59d

whereJj andI j8 denote the Bessel and modified Bessel func-
tions of orderj and j8, respectively, and

1

2p
R e−i,zS o

j=−`

`

e−i j zJjshdDS o
j8=−`

`

eij 8zI j8sl̂dDdz

= o
j=−`

`

JjI j+,. s60d

The Fourier gyroangle expansion of the generic perturbed
potential(56) is, therefore, expressed as

dxksX + rd = o
m,,=−`

`

eismw+,zd

3S o
j=−`

`

JjshdI j+,sl̂dDdxmksc,sd

= o
m,,=−`

`

eismw+,zddx̃m,k, s61d

where the Fourier-Bessel componentsdx̃m,kss; I d are func-
tions of the parallel spatial coordinates and the invariant
coordinatesI =sJg,« ,Jdd.

Lastly, using the expression(54) for dB̃im,k, the Fourier-
Bessel expansion of the third termv' ·dA' in the perturba-
tion Hamiltonian(55), with dA' given by Eq.(50), is pro-
gressively transformed as follows. First, we begin with

−
q

c
v' · dA'k = −

q

c
u = c uv' sinzSdbk + a

]

]s
dakD

= ivcRp' sinz o
m,,

eismw+,zd

m So
j

JjI j+,DdBimk

B
,

where Eqs.(54) and (61) were used, with the definitions
u=cu=BR and p'=gMv'. Next, by substituting sinz=seiz

−e−izd /2i, we obtain

−
q

c
v' · dA'k = vcRp'o

m,,

eismw+,zd

2m Fo
j

I j+,sJj+1

− Jj−1dGdBimk

B
,

where thej-summation was re-arranged. Lastly, we use the
Bessel recurrence relationJj−1shd−Jj+1shd=2h−1 Jj8shd to
obtain

−
q

c
v' · dA'k = Jgvc o

m,,
eismw+,zdFo

j

I j+,sl̂d

3S−
2

h
Jj8shdDGdBimk

B

= Jgvc o
m,,=−`

`

eismw+,zddB̃im,k

B
. s62d

In summary, the Fourier-Bessel components of the perturba-
tion Hamiltonian(55) are

dH̃m,k = qSdf̃m,k − s
uviu
c

]dãm,k

]s
D + Jgvc

dB̃im,k

B
, s63d

where

Sdf̃m,k

dãm,k
D = o

j=−`

`

JjshdI j+,sl̂dSdfmksc,sd
damksc,sd

D , s64d

dB̃im,k = o
j=−`

` S−
2

h
Jj8shdDI j+,sl̂ddBimksc,sd. s65d

The Fourier-Bessel componentsdH̃m,kss,s ; I d of the pertur-
bation guiding-center Hamiltonian can now be used explic-
itly in the expression for the quasilinear potential(45).

C. Solution of fast-time evolution equation

Following an approach detailed in Paper I, we remove

thes-dependence ofdH̃m,kss,s ; I d by introducing a new per-
turbation Hamiltonian

dK̃m,k ; dH̃m,k +
q

c
L̂dãm,k = qdF̃m,k + i

q

c
smvd

+ ,vcddãm,k + Jgvc
dB̃im,k

B
, s66d

where the differential operatorL̂ is defined in Eq.(40) and

dF̃m,k = df̃m,k − isvk/cddãm,k = −E dẼim,k ds.

Note that, as in Paper I(Appendix B), the new perturbation
Hamiltonian can also be expressed as

dK̃m,k =
q

mc
smvd + ,vc − vkd E dB̃m,k

c

B
ds+ Jgvc

dB̃im,k

B

+
iq

m
dẼwm,k, s67d

in terms of components of the perturbed electric and mag-
netic fields.

We also introduce the new nonadiabatic partdG̃m,k8 de-
fined as

dG̃m,k8 = dG̃m,k + i
q

c
Fdãm,k s68d

so that the fast time scale evolution fordG̃m,k8 is obtained
from Eq. (33) as

L̂dG̃m,k8 = L̂dG̃m,k + i
q

c
FL̂dãm,k = iFSdH̃m,k

+ i
q

c
L̂dãm,kD = iFdK̃m,k, s69d

where we used the fact that the differential operatorL̂ com-
mutes withF.
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The rest of the analysis leading to the solution ofdG̃m,k8

in terms of the modified perturbation HamiltoniandK̃m,k fol-
lows Paper I.11 First, we note that the transformation

sdG̃m,k,dH̃m,kd→ sdG̃m,k8 ,dK̃m,kd leaves the quasilinear po-
tential invariant:

Gm,k = F−1 ImkdG̃m,k8 dK̃m,k
* l, s70d

as follows from properties of the averaging operationsks¯dl
and the differential operatorL̂. From Eq.(61) of Paper I,
where we now replacemvd→ smvd+,vcd, the solution of
Eq. (69) is written as

dG̃m,k8 = FeisuHisE
sL

s ds8

uviu
e−isuss8ddK̃m,kss8d

−
tb

2
scotQkdK̃m,k cosul + kdK̃m,k sinuldJ ,

s71d

where thes-dependent angleussd is defined as

uss;I d =E
sL

s ds8

uviu
svk − mvdss8d − ,vcss8dd, s72d

while thes-independent angleQ is defined as

QsI d =
tb

2
svk − ,kvcl − mkvdld. s73d

Here,kvcl andkvdl denote the bounce-averages of the gyro-
frequency and drift-frequency, respectively; in Appendix B,
we present a simple expression for the bounce-averaged drift
frequencykvdl in terms of the bounce-averaged radial gradi-
ent k]vc/]Jdl.

Using simple relations derived in Paper I, we ultimately
find the quasilinear potentialGm,k given as

Gm,ksI d =
tb

2
ukdK̃m,kss;I dcosuss;I dlu2Ims− cotQd. s74d

Here, we note that

tb

2
cotQ = o

n=−`

`

svk − ,kvcl − mkvdl − nvbd−1, s75d

wherevb=2p /tb denotes the bounce frequency.
Lastly, using the Plemelj formula, we find

tb

2
Ims− cotQd = o

n=−`

`

pdsvk − m · kvmld, s76d

wherem=s, ,n,md and

m · kvml ; ,kvcl + nvb + mkvdl. s77d

Using these expressions, the quasilinear potential(74) is
written as

Gm,k = o
n=−`

`

pdsvk − m · kvmldukdK̃m,kcosulu2. s78d

Note that wave-particle resonances involve harmonics of the
bounce-averaged gyrofrequencykvcl and the bounce-
averaged drift-frequencykvdl. By combining these results
into Eq. (48), we finally obtain the expression for the rela-
tivistic quasilinear diffusion tensor

DQL = o
m,k 1

,2 ,vk ,m

vk, vk
2 vkm

m, mvk m2 2fpdsvk − m · kvmld

3ukdK̃m,k cosulu2g. s79d

The structure of the relativistic quasilinear diffusion tensor
(79) clearly shows that, for arbitrary values of gyro-harmonic
and drift-harmonic numberss, ,md and non-vanishing wave
frequencyvk, off-diagonal quasilinear transport cannot be
neglected(see Appendix A for a brief discussion of off-
diagonal quasilinear transport coefficients). Note also that
wave-particle resonances, in fact, involve bounce-averaged
cyclotron and drift frequencies, not their local expressions as
might be expected.

V. SUMMARY

The present work has presented a complete derivation of
the relativistic bounce-averaged quasilinear diffusion equa-
tion associated with arbitrary-frequency electromagnetic
fluctuations in axisymmetric geometry. The main results are
the relativistic quasilinear equation, Eq.(47), and the corre-

sponding diffusion tensor, Eq.(79), wheredK̃m,k is given by
Eq. (66) or Eq.(67). In Eq.(79) thes-dependent angleussd is
given by Eq.(72), k…l denotes bounce-averaging, and the
Fourier-Bessel components(denoted by a tilde) are defined
in Eq. (61). The quasilinear diffusion tensor is also presented
in energy, pitch-angle coordinates in Appendix A.

Future work will include a comparative study with pre-
vious analytical models of pitch-angle and energy
diffusion,7,8 and with calculations of radial diffusion
coefficients,2,5,6 plus generalization to allow non-
axisymmetric unperturbed electric and magnetic fields. In re-
lated work, a numerical implementation of the present rela-
tivistic quasilinear diffusion equation in a multi-dimensional
simulation code is being developed(in collaboration with Dr.
Jay Albert), including an investigation of the importance of
off-diagonal quasilinear diffusion coefficients in non-
axisymmetric magnetic geometries.
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APPENDIX A: EQUATORIAL PITCH-ANGLE
FORMULATION

Since quasilinear transport is often discussed in terms of
the equatorial pitch-angle instead of the gyro-actionJg,

2 we
introduce the cosine of the equatorial pitch angle(denotedj)
defined as

jsJg,«,Jdd =
pi0

p
= S1 −

Jgvg0

«sg + 1d/2D
1/2

, sA1d

where the parallel momentumpi0 and the rest-mass gyro-
frequencyvg0=qB0scd /Mc are evaluated on the equatorial
plane. From this definition, we obtain the differential relation

dj =
1

Jjvc0
fvc0dJg + vd0dJd − s1 − j2dd«g, sA2d

where the drift frequency

vd0 ; Jg
]vc0

]Jd
sA3d

defines an equatorial drift frequency[see Eq.(B2)] and

Jjsj,«,Jdd =
ppi0

Mvg0
sA4d

is the Jacobian associated with the substitutionJg→j (and
thus Jj has units of action). Using the differential relation
(A2), the unperturbed guiding-center evolution of the equa-

torial pitch angle isj̇0=0.

The perturbed pitch-angle Hamilton’s equation fordj̇ is
expressed as

dj̇ =
− 1

Jjvc0
Fvc0

]

]z
+ vd0

]

]w
+ s1 − j2dS ]

]t
−

d0

dt
DGdH.

The differential operatorF̂ becomes

F̂ = S ]F0

]Jd
+

vd0

Jjvc0

]F0

]j
D ]

]w
+

1

Jj

]F0

]j

]

]z
− S ]F0

]«

−
s1 − j2d
Jjvc0

]F0

]j
D ]

]t
. sA5d

Relativistic quasilinear diffusion equation(47) can also be

written in terms of the invariant coordinatesĪ =sj ,« ,Jdd,

]F0

]t
=

1

Jjtb

]

]Ī iSJjtbD̄QL
i j ]F0

]Ī j D , sA6d

whereJj is defined in Eq.(A4) and the components of the
new quasilinear diffusion tensor are defined by the relation

D̄QL
i j =

]Ī i

]IaDQL
ab ]Ī j

]Ib . sA7d

The new quasilinear diffusion tension is, therefore, expressed
as

D̄QL = o
m,,,k 1

Lm,k vklm,k mlm,k

vklm,k vk
2 vkm

mlm,k mvk m2 2Gm,k, sA8d

where the pitch-angle coefficientsLm,k andlm,k are defined
as

Lm,k =
1

Jj
2vc0

2 f,2vc0
2 + s1 − j2d2vk

2 + m2vd0
2 g, sA9d

lm,k =
1

Jjvc0
f,vc0 − s1 − j2dvk + mvd0g. sA10d

Note that, while the diagonal coefficient(A9) cannot vanish
(since it is strictly positive), the off-diagonal coefficient
(A10) may be small when evaluated at the wave-particle
resonancevk=,kvcl+nvb+mkvdl. Further discussion of the
importance of these off-diagonal quasilinear transport coef-
ficients is, however, outside the scope of the present work
and will be a subject for future work when non-axisymmetric
magnetic geometries are also considered.

APPENDIX B: BOUNCE-AVERAGED DRIFT
FREQUENCY

In this appendix, we derive an explicit expression for the
bounce-averaged drift frequency based on the definition(11):

kvdl =
1

tb
o
s
E dsS Jg

uviu
]vc

]Jd
−

cJga

quviu
]vc

]s
+

cupiu
q

]a

]s
D .

sB1d

Using the identity

cupiu
q

]a

]s
=

]

]s
S c

q
upiuaD −

ca

q

]upiu
]s

=
]

]s
S c

q
upiuaD

+
cJga

quviu
]vc

]s
,

which follows from the definition(9) for pi, we find that the
second and third terms in Eq.(B1) cancel each other and,
hence, only the first term in Eq.(B1) remains. The bounce-
averaged drift frequency is, therefore, given as

kvdl =
1

tb
o
s
E dsS Jg

uviu
]vc

]Jd
D = JgK ]vc

]Jd
L . sB2d

Based on this expression, we defined in Eq.(A3) the equa-
torial drift frequencyvd0.

An alternative expression forkvdl is obtained by intro-
ducing the bounce action

Jb = o
s
E ds

2p
upiu sB3d

and the bounce frequency

vb =
2p

tb
= S ]Jb

]«
D−1

, sB4d

so that the bounce-averaged drift frequency(B2) can also be
expressed as
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kvdl = −
1

tb
o
s
E ds

]upiu
]Jd

= − vb
]Jb

]Jd
, sB5d

where Eq.(9) was used forpi.
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