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Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations
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A set of self-consistent nonlinear gyrokinetic equations is derived for relativistic charged particles
in a general nonuniform magnetized plasma. Full electromagnetic-field fluctuations are considered
with spatial and temporal scales given by the low-frequency gyrokinetic ordering. Self-consistency
is obtained by combining the nonlinear relativistic gyrokinetic Vlasov equation with the
low-frequency Maxwell equations in which charge densities and current densities are expressed in
terms of moments of the gyrokinetic Vlasov distribution. For these self-consistent gyrokinetic
equations, a low-frequency energy conservation law is also derivedl999 American Institute of
Physics[S1070-664X99)01012-3

I. INTRODUCTION terms of guiding-center and gyrocenter dynamics wherein
the equations of motion are independent of the fast gyromo-
Relativistic particles, particularly electrons, are found intion degree of freedom.
many plasmas, including fusion plasnta$space plasmds In previous work on radiation-belt transport, various
and astrophysical plasm&sn addition to the general ques- Fokker-Planck transport equations for the average phase-
tion of how these particles are transported and accelerated tace density as a function of the three adiabatic invariants
relativistic energies, the particles are of interest because theye ysed:!” These radiation-belt transport equations are es-
can cause significant damage. In fusion plasmas, for exsentially quasilinear transport equations in the space of the
ample, relativistic runaway electrons can cause serious danyree adiabatic invariants. It is important to note that these
age to the containment vessélin space plasmas, on the equations are not derived from first principles; rather, the

other hand, relativistic electrons trapped in the Earth’s radiagym of the equation is assumed and the transport coeffi-
tion belts are hazardous to spacecraft hardivanel they are  ianis for diffusion and drag are given semiempirical forms

a rad|at|_on hazard to astronaflts. . and then adjusted by attempting to reproduce measured par-
In high-temperature tokamak plasmas, multi-MeV ruN-4 1o fluxes

away electrons are typically generated during the start-up Recently, nonrelativistic quasilinear transport equations

phase or fpllowmg plasma dlsrupt|o_ﬁ$\fter a d.|srupt|on, & have been derived to describe the interaction of nonrelativ-
large fraction of the stored magnetic energy in the tokamak . ; . . .
istic particles with magnetospheric hydromagnetic wa¥es.

plasma can be transferred to the runaway-electron populq— . o L
. . : : .. In these equations it is shown that the wave-particle interac-
tion. The primary mechanism for the generation of relativis-

tic runaway electrons involves an accelerating electric ﬁeloti:)nsa_rf}asqlt mta dra\g/]\;llke termt Vtvr:"(t:hthcan be_”cgmpara_lblﬁ 0
strong enough to overcome the frictional drag produced b)} € diusion term. YVe expect that here will be a simiar
Coulomb collisiong:®°The confinement properties of rela- drag-like contribution in the relativistic quasilinear transport

tivistic test-particles in tokamak plasmas have been investi€duation; in the past this contribution has been ignored be-

gated in Refs. 11 and 12: these studies reveal that th§2Use the drag term has been assumed to arise only from
guiding-center approximation is appropriate for relativistic Coulomb scattering. Chen’s derivati§ibegan with the non-

runaway-electron dynamics in axisymmetric and non_rellativislti)cz(?onlinear gyrokinetic Vlasov equation derived by
axisymmetric tokamak plasmas. Brizard:™ _ o o

In space plasmas there is observational evidence that In this paper a nonlinear relativistic gyrokinetic Vlasov
relativistic electrons may be produced during magneticequation is derived, partly as a starting point for a later deri-
storms by a drift-resonant exchange of energy with hydroyation of relativistic quasilinear transport equations for space
magnetic waves in the Earth’'s magnetospHéféThe drift-  Physics applications, and partly because it is interesting in its
resonant interaction conserves the first adiabatic invariar@Wn right as a relativistic generalization of the earlier work
and transports particles to regions of higher magnetic fiel®f Brizard?® Other applications might include the gyroki-
magnitude, thereby increasing their enetyj® The time- netic particle simulation of relativistic runaway electron
scale separation between the short gyroperiod and the lorfgansport in tokamak plasmas. The nonlinear relativistic gy-
drift-period motivates the asymptotic removal of the gyro-rokinetic equations derived here also extend the earlier work
motion time scale from thexactdynamical description. The by Littlejohr®* and by Tsai, Van Dam and Chéhwho de-
resulting reduced dynamical description is expressed in rived linear relativistic gyrokinetic equations.
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Finite gyroradius effects are usually small for electrons,  dp* q
. .. . . — af
but they are not necessarily negligible, especially for highly 5~ = cF* U, (2
relativistic electrons such as those found in fusion and space _ S
plasmag® For generality we retain the finite gyroradius ef- Where summation over repeated indices is assumed and

fects in this paper; in a future paper we will obtain the drift-  pas= japs_ sop« 3
kinetic equations from the appropriate limit of the finite gy- ) )
roradius equations. is the Faraday tensdf.Here, the space-time contravariant

The remainder of the paper is organized as follows. Irderivative is 9°=g*? gz=(—d/3x°, V), where g°
Sec. II, relativistic Viasov-Maxwell equations are presented™ diag (—1,+1,+1,+1) is the space-like metric tensor, and
as a foundation for work done in future sections. In Sec. lll,  Ae¢=(p,A) (4)
an outline of the derivation of relativistic Hamiltonian .
guiding-center theory based on the phase-space Lagrangié§1
Lie-transform perturbation method is presented. Sections 1V
and V, where relativistic Hamiltonian gyrocenter theory andB- Noncanonical Hamiltonian structures
nonlinear relativistic gyrokinetic Vlasov-Maxwell equations, 7. covariant noncanonical Hamiltonian structure
respectively, are derived, contain the new results in nonlinear
relativistic gyrokinetic theory. Lastly, Sec. VI presents a
summary of our work and discusses its applications.

the four-dimensional electromagnetic potential.

We now show that the equatioii$) and (2) possess a
covariant(cov) Hamiltonian structure, i.e., they can be writ-
ten asdZ®dr={2%H}.y, wWhere 23=(x%x;p%p) are
eight-dimensional noncanonical phase-space coordinates,
is the covariant relativistic particle Hamiltonian afidl..y is

Il. RELATIVISTIC VLASOV-MAXWELL EQUATIONS the covariant relativistic noncanonical Poisson bracket on

. . S . __eight-dimensional phase space.
In this section, we present two Hamiltonian formulations To derive the covariant relativistic Poisson bracket

of the relativistic Vlasov-Maxwell equations. Each formula-{ ! we proceed along the same lines as with the nonrel-
. . . . . . - 1Jcovs
tion is defined in terms of a Hamiltonian functidth and a ativistic case(see Ref. 25 for details We begin with the

PO'SS.O n bracke{t,} de'.”"ed from a phase-;pace Lagrang'an'covariant relativistic phase-space Lagrangian,
The first formulation is based on a covariant description of

relativistic charged particle dynamics in an arbitrary electro-
magnetic field in terms of the phase-space coordinat@s (
_ cn0_ 0 i

ctx P E/c,p),. where &'X) denotes .the space-time From the fundamental Lagrange brackf? z°1=0Q,,,
position of a particle andpC,p) denotes its momentum- 6

. . : wherée

energy coordinates. The covariant formulation treats space
and time on an equal footing. The second formulation, on the ) ) W

dx=T,d 22, (5)

[eov=

q
Pot EAa

other hand, treats time and space separately and makes use of (ap= 2 . ob’ (69)

the extended phase-space coordinatep;{,w), where the J2= 92

energy coordinatev is canonically conjugate to time we define the Lagrange §88) matrix with components
For each Hamiltonian formulation, a relativistic Vlasov Q,y,,

equation{f,H}=0 for the Vlasov distribution functiof is o) F B

written in terms of the Hamiltonian functiad and the Pois- (@/C)Fap ~ Gap

son bracket{,}. Next, self-consistent relativistic Maxwell Gus o |’ (6b)

equations are presented in which the charge and current den-
sities are expressed in terms of moments of the relativistisvhere each component {8b) is a 4X4 matrix. The inverse
Vlasov distribution functionf. Lastly, an exact energy- of the Lagrange matrix6b) defines the Poisson matrix,
momentum conservation law for the self-consistent relativis- 0 gh

tic Vlasov-Maxwell equations is presented. ( )

)
g** (alc) F*

The relativistic motion of a particle of rest-massand Wwhose elements in turn define the fundamental Poisson
chargeq is described in eight-dimensional phase space irbrackets{ 22, 2"},

terms of the space-time coordinatet= (x°=ct,x) and the q
four-momentump®=mu®= (p°p), where the four-velocity {x%x”};,,/=0, {x*p’leu=0, and {p“,pﬁ}COVEEF“ﬁ.

A. Relativistic charged particle dynamics

The Poisson brackdt4, B}, of two functions.4 and B3 on
dx® 0 eight-dimensional phase space is thus constructed from these
=7yC, U= V), () i i
fundamental Poisson brackets to yield
with y=(1—|v|?/c?) "2 the relativistic factor andd/dr (A, Bl eor=0* dA IB  JA IB ﬂFaﬁﬁﬁ
=y d/dt the derivative with respect to proper time. ey ox* apP  gpP ax*) ¢ ap® apP
The equation of motion for the four-momentysfi is (8
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We note that the phase-space coordin&@sre noncanoni- and its associated noncanonical Poisson bracket is derived by
cal because of the second term in the Poisson bra@et the same procedure used in going fr¢bh to (8) above; for
Furthermore, the Poisson brack8} is guaranteed to satisfy two arbitrary functiond= and G on extended phase space, it
the Jacobi identity as well as other Poisson-bracket propeis given as
ties since it was der_|ved from a_p_ha_se—spa;e L_agrangla_n. JE 9 IF 9G G IF
We now determine the relativistic Hamiltonian function {F,G}E< ) ( 5 )

+
H by requiring thatd Z3/dr={22 H}.,. Substituting.A ow Jt  Jt Jw
=x or p® and B="H in (8), we find ql  9F G IA (3,: oG oF aG”

C

IH o T\ apaw  aw ap
a — g8t
{x*, Htcov=0 poy: (120

Using (11) and(12b), the relativistic noncanonical Hamilton

and . . .
equations for charged particle motion are now
dJH q oH dt dH
CH o= — 9P— + —FP— . —=——-=
We recover(1) and (2) from these equations if the Hamil- dw JH qdJA oH b v IA
tonian function™ is qt ot cat ap N e a) (13b)
1 m
— anpB— a dx oH P
H= 5 —0ap PUPP="5g,puu’. (9) B
2m>eh 2 Jab dt-ap my v, (130
The coyariqnt dynamical Eg&l) and(2) can thus be written dp qJA dH g oH y
in Hamiltonian form, —=—VH+—-——+—-—XB=q| E+-XB].
dt cdt ow c dp C
dx*ldr={x%H}co,=Pp*Im=u*
cov . (10) (13d)

dp*/dr={p* H}eo=(a/mc) F*# pg=(a/c) F** ug This set of Hamilton equations presents an alternative de-
scription to the Hamilton equationd0) derived within the
covariant formulation. In the present formulation, we note
%rom (139 that the time coordinatecan be identified with

the Hamiltonian orbit parameter.

Note that covariant relativistic charged-particle motion take
place on the surfacé(=—mc*/2, where the right side is
obtained by substitutingl) into (9). Hence the Hamiltonian
H is a Lorentz scala?* More importantly, however, the
Hamiltonian function(9) has no classical analog.e., the
limit c—oo is not defined This property of the covariant
Hamiltonian(9) forces us to seek an alternative Hamiltonian ~ The relativistic Vlasov equation describes the fact that

formulation for relativistic charged-particle motion with a the Vlasov distribution function is conserved along a relativ-
well-defined classical limit. istic Hamiltonian orbit in phase space. First, using the cova-

riant formalism discussed above, this statement is math-
ematically expressed as

C. Relativistic Vlasov equations

2. Extended phase-space Hamiltonian structure i_fz {FH} o= O, (14)

The relativistic Hamilton Eq91) and(2) can alternately
be written in terms of the reference-frame timasdz?/dt  where F(x,p) is the covariant Vlasov distribution function
={z%H}, where z22=(x,p;t,w) are extended phase-space on eight-dimensional phase space. It can be explicitly written
coordinates and the Hamiltonian structure is given in termsis
of the extended relativistic Hamiltoniaifor positive-energy

particles, 0=u*—— 4+ 2 Faby (159
ax* € gp“ b
H=ymcd+qd—w, (12)
where y= 1+ [p/md? and, since the relativistic charged- o
particle motion now takes place on the surface=0, g [dz?
w=vymc®+q ® represents the total energy of a charged par- 0= E( dr ]:) ' (15h

ticle (including its rest energy In contrast to the covariant

Hamiltonian (9), the Hamiltonian(11) has a well-defined Ssince  Hamilton’s  equations  are  incompressible:
classical limit and is an energy-like quantity. The phased(dZ2%d7)/dZ%=0.

space Lagrangian, on the other hand' is The covariant relativistic Vlasov equat|dm4) has one
additional degree of freedom compared to its non-relativistic
version. This is due to the fact that the energy coordipdte

= is not really independent of the other coordinates because the

p+gA -dx—w dft, (129
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Hamiltonian(9) is constrained to be equal toe m¢?/2 (i.e.,
p.p*=— m?c?). Hence the covariant Vlasov distribution
function F(x,p) must vanish forp®+ymc (for positive-
energy particles This thus implies that the covariant Vlasov
distribution F(x,p) should be written &%

mc2
F(X,p)=cé| H+ T) f(x,p,t)

f(x,p,t)

=3(p°~ymo) (16)
where f(x,p,t) is the Vlasov distribution on the six-
dimensional phase space with coordinatep) and y=(1
+|p/md?)¥2 is the relativistic factor expressed in terms of
the relativistic kinetic momentunp; note thatf(x,p,t) is
explicitly independent of the energy coordinate When
(16) is substituted intq14), one obtains

0=cé

mc
H+ T){va}cov

= 8(p°~ yme)
af+u Vi+q| E+ ! B of 17
Moty VA B G 4

After performing ap®-integration on(17a, we obtain the
relativistic Vlasov equation on-61 phase space,

of v
E+v- +q

0

ap
which looks exactly like the nonrelativistic Vlasov equation
except thap is the relativistic kinetic momentum= myv.?’
The relativistic Vlasov equatiofl7b) can also be written as

It hy=0
a:{y }_ l

(17b

v
E+-XB
c

(18

where the relativistic Hamiltonian is given k¢1) and the
Poisson bracket is given H{2h). Note that this new Hamil-
tonian formulation has separated the components of the ele
tromagnetic four-potentiald®,A): the electrostatic potential
® now appears in the Hamiltoniaid1) while the magnetic
vector potentialA and its derivatives remain in the phase-
space Lagrangiafil2g and the Poisson brackét2h).

D. Self-consistent relativistic Vlasov-Maxwell
equations

To obtain a self-consistent relativistic Vlasov-Maxwell

theory one combines the covariant relativistic Vlasov equas

tion, (14) or (18), with the Maxwell equations
pa
aBiry= 8 —r) —
dgFeP(r)=4m, qJ d8z28%(x M) = F%p)

pa
mcy

47, qf d®z8%(x—r) f(x,p;t),

(19
where the sum is over particle species arfd-(ct,r) de-
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densities are evaluated. The second expression on the right
side of (19) is obtained by substitutingl6) into the first
expression and performing tip@-integration.

The relativistic Vlasov-Maxwell equationd4) or (18)
and (19) satisfy an energy-momentum conservation law

J af afl
%(TM +T¢P) =0, (209

where the energy-momentum stress terB®f= T+ T¢#

is divided into the Maxwellfield) part,

T = L(F Fvu)gaﬁ_ i Farg EvB (20b)
M 167 Hv 4 pyeo
and the Vlasovparticle part,
mu*u?
TeP=Y f d*pmurulr=">, J d®p ” f. (200

Of particular importance in the development of self-
consistent Hamiltonian gyrokinetic particle simulation tech-
niques is the energy conservation law

€
— +V.S=0,

at (2139
where the energy density is

6’:%(|E|2+|B|2)+2 f d*pym¢e3f, (21b)
and the energy-density flux is

S=%EXB+E fd3pmc2uf. (210

We return to this conservation law in Sec. V C, where an
approximate energy conservation law is derived for the non-
linear relativistic gyrokinetic Vlasov-Maxwell equations.

In summary, two Hamiltonian formulations for relativis-
tic charged-particle motion are presented in this section: the
covariant formulation based on the Hamiltonig) and the
Boisson brackef8); and the extended phase-space formula-
tion based on the Hamiltoniafl1l) and the Poisson bracket
(12b). For each formulation, self-consistent relativistic
Vlasov-Maxwell equation§(14) or (18) and(19)] are given
in addition to the exact energy-momentum conservation law
(20a. In the remainder of this paper, we adopt the extended
phase-space formulation since its Hamiltonian function has a
well-defined classical limit and the separation of the time
coordinate from the other phase-space coordinates allows us
to transform the latter coordinates without transforming the
ime coordinate itself.

lll. RELATIVISTIC HAMILTONIAN GUIDING-CENTER
THEORY

A. Preliminary coordinate transformation

Relativistic charged-particle motion in a strong magnetic
field is characterized by three disparate time scales: the fast
gyromotion time scale associated with gyration about a

notes the space-time location where the charge and curresingle magnetic field line, the intermediate paraller
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bounce time scale associated with motion along a field line,and the unperturbed relativistic guiding-center Hamiltonian

and the slow drift time scale associated with motion acros$unction

magnetic-field line$®
In the following analysis(only results are presented Hoge=ymc* =W

herg, we work in a preferrei referen_ce fram_e in which the =mc \/1+(2,uBolmc2)+(pH/mc)Z—W. (27)

background magnetic fielBo=V XA, is time independent

(dAo/dt=0) and the background electrostatic fiele, is  In (26), R denotes the guiding-center positioq, («, #) are

zero. We note that the choicky=0 is not crucial to the the guiding-center momentum coordinates, awit) are the

present analysis and that nonrelativistic gyrokinetic theory irguiding-center energy coordinate and time coordinaie

the presence of background nonuniform electrostatic fieldbenceforth omit the subscript O to denote the background

has been systematically derived elsewhere using phase-spaoagnetic fielgl In addition, the dimensionless parameger

Lagrangian method$:*In the present paper, any quasistatic <1 denotes terms of order of the ratio of the gyroradjsls

electrostatic potential is thus treated as a perturbation. Wever the magnetic-field nonuniformity length scélg (see

further note that the covariant formulation of relativistic Ref. 28 for details

guiding-center Hamiltonian theory has been developed in  The relation between the guiding-center phase-space co-

Ref. 30 in which the background electromagnetic field isordinatesZ?=(t,W,R,pj,u,6) and the local phase-space

expressed in terms @b, andA,. coordinatesz®= (t,w,X,p|o, 0, o) IS given to lowest order
The analysis begins with the introduction of the follow- in magnetic-field nonuniformity as

ing local momentum coordinateg(o, ug, o),

w=W
P=p|ob— v2muoBo(acoshy+csin ), (22 x=R+ep
where pHOEm’yV-B is the component of the relativistic Plo=p| , (28)
momentum parallel to the local background magnetic field e
(Bo-b=By), mo=my?|v, |?/2B, is the relativistic magnetic o —
o =

moment, whileg,=tan [ (—p-c)/(—p-a)] is the local gy-
rorangle, and i,ﬁ,f:) form a right-handed orthogonal unit- wherep(u, 8)=po(uq,00) denotes the gyroradius vector ex-
vector set. The Jacobian for this preliminary coordinatepressed in guiding-center coordinates.

transformation ianBj. The Poisson bracket corresponding to the relativistic
Inserting the local momentum coordinates ifit@a, the  guiding-center phase-space Lagrangi@6) is defined in
unperturbed phase-space Lagrangian is terms of two arbitrary function§ and G on the guiding-
q P center eight-dimensional phase space as
- Po
Ioy=|—= Agt+pjgb+mwg—— | -dx—wdt, 23
0 (C 0T Plo wBﬁﬁo (23 (F .G JF 0G 9F 4G B* G oF )
wherewg=qB,/mcis the signedrest-masggyrofrequency T oW gt ot oW Bﬁ‘ ap 9Py
and the lowest-order relativistic gyroradius vecpgris
. VEXVGL q(dF oG IF aG)
bxu 1 2u0Bg ~ R - : =
Po= = =\ %(Ccosfy—asinby), (24) MwgB|’ mcl g0 du  dp 90
wpg wpg m

(299

where the small parameterwas omitted for simplicity and

while the unperturbed Hamiltonian function is
Ho=mc V1+(2uoBo/mc) +(pjo/mo?~w. (25

After this preparatory transformation, we now proceed with B*=B+(cp/q) VXb
the asymptotic elimination of the fast gyromotion time scale Bj =ph.B*= B[ 1+ (pj/Mwg) B-VXB] '

from the relativistic Hamiltonian system represented 2§)
and(25). We note that the Jacobian for the guiding-center transforma-

tion is Bﬁ‘/B and thus the Jacobian for the total transforma-
tion (t,w,x,p)— (t,W,R,p|,x,6) is mBf .
Using the relativistic guiding-center Hamiltonia27)
and the relativistic guiding-center Poisson bradk2®a and
Using the phase-space Lagrangian Lie-perturbatioi29b)], we obtain the relativistic guiding-center equations of
method on the unperturbed phase-space Lagrari@@&rand ~ motion: dZ®%/dt={Z%Hgqc}4.. The relativistic guiding-
the unperturbed Hamiltoniai25), we obtain(to zeroth-order center equations for the canonically conjugate coordinates
in magnetic-field nonuniformitythe unperturbed relativistic (t,W) are
guiding-center ¢c) phase-space Lagrangian,

(29b

B. Relativistic guiding-center Hamiltonian dynamics

dt/dt=— dHgge/W=1
-dR+e(mdq) udo—W dt, dW/dt=dHoge/t=0

(26)  The relativistic guiding-center velocity

(303

q ~
FOgc: (EAO_'— pH b
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dR  dHq B* . cb
dt p| B|T qB‘“"‘

q q
><VHOgc Flgc:EAl(R+Pat) -(dR+dp)= EAlgC. (dR+dp),
(329

and the first-order guiding-center Hamiltonian is

B*
=P S xuve (30b)
Y BH quH ngc:qq)l(R'l'P-t)qu)lgc’ (32b

includes parallel motionf{- dR/dt= pj/ym) as well as the whe.re the p('a.rturbation field@ll andA; are evalua.ted at the
gradient-B and curvature driftsvhich characterize drift mo- Particle positionx=R+p at time t and we defined 4
tion). The relativistic guiding-center force equation for the =®P1(R+p,t) andA;y.=A;(R+p,t). The subscripgc is

parallel momentum used here to denote the fact that the fieldg RH R, +p,t)
and Ay(R|,R, +p,t) _ have acquired gyroangle-dependence
dp B* u B* through the gyroradius vectar.
9 g Hoge=— e -VB, (300 The perturbations (323 and (32b)] reintroduce gy-
I I

roangle dependence into the guiding-center Hamiltonian dy-
shows the mirror force associated with magnetic-field nonhamics(31). To remove this fast time-scale dependence, we
uniformity along the magnetic field linesvhich character- again use the phase-space Lagrangian Lie-perturbation
izes the bounce motignWe point out tha(30b) and (300 method. The outcome of this analysis yields th&ocenter
agree with the standard relativistic guiding-center equation§lamiltonian dynamics, i.e., perturbed guiding-center Hamil-
found in Northroﬁs if we neg|ect phase-space volume- tonian dynamics from which the fast gyroangle dependence

preserving termgsuch as the difference betweBfi andB); ~ has been asymptotically eliminated. In what follows, we
see(30e below. Lastly, the relativistic guiding-center equa- shall treat the_nonunlform|ty in the backgroun_d field only to
tions for the canonically conjugate coordinates ¢) are lowest order, i.e.dp=(dp/dp)du+(dp/d6)do in (32a.
du/dt=— (q/mc) dHoge/d0=0 A. Low-frequency gyrokinetic ordering
gc
dé/dt=(q/mo) Hoge/ Iu=wg y | (300 The electromagnetic-field perturbations [f828 and

(32b)] are assumed to satisfy the following space-time scale
These equations indicate that, through the asymptotic elimierdering®:
nation of the fast gyromotion time scale, an adiabatic invari-

ant, the relativistic magnetic moment, has been con- wl0c=0(€;)
structed. Hence, within relativistic  guiding-center K p=0(es) ¢, (33
Hamiltonian theory, the relativistic magnetic moments a k.| p=0(1)
. L 1P (
constant of the motion. We also note that the guiding-center . i
Hamilton equation$(30a—(30d)] satisfy the identity wherep and w.=wg/y are a typical gyroradius and gyrof-

requency for a particle of massand chargey, respectively,
9 dz2 while (o,k,k,) are the characteristic frequency, parallel
E( BTw) =0, (308  and perpendicular wave numbers of the electromagnetic-field
fluctuations of interest. This is the usual low-frequency gy-
i.e., the relativistic guiding-center Hamiltonian flow is in- rokinetic ordering" in which the characteristic fluctuation

compressible; note that the appearance of the Jac@fian ~ time scales are long compared to the gyroperiadd;, the

(309 ensures the property of phase-space volume Conservgharacteristic Wavelengths parallel to the magnetiC field
tion. 2w/k are long compared to the typical gyroradjuswhile

the characteristic wavelengths perpendicular to the magnetic
field 27/|k, | are comparable tp.

The space-time scale ordering used for the background
field, on the other hand, considers a characteristic time scale
ordered at(?(efg) compared to the gyroperiodidw, and a

When small-amplitude electromagnetic-field fluctuationscharacteristic spatial scale orderedeatO(e;) compared to
®,(x,t) and A(x,t) are introduced into the relativistic the t.yplcal gyroradiug. Since the present. ngnlmear ane}ly3|s
guiding-center Hamiltonian theory, the guiding-center phase€t@ins only terms up to second orderdp in the Hamil-
space Lagrangiaf26) and the guiding-center Hamiltonian tonian, the background fields are thus considered as time-

IV. RELATIVISTIC HAMILTONIAN GYROCENTER
THEORY

(27) are perturbed independent nonuniform fields with weak spatial gradients
' (p|V InB|<1).
FgC:FOQC+ férlgc (31)
Hge=Hogct €sH1gc) B. Phase-space Lagrangian Lie-perturbation method
wheree is an ordering parameter associated with the ampli-  To remove the gyroangle dependence reintroduced by
tude of the electromagnetic field perturbations. the electromagnetic field perturbations (1), we use the

The first-order guiding-center phase-space Lagrangiaphase-space Lagrangian Lie-transform  perturbation

is?0 method®3? wherein a new(gyrocenter phase-space La-

IS
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grangianl’y, and a new(gyrocentey HamiltonianHg4, are  D. Nonlinear gyrocenter Hamiltonian
constructed. These new gyrocenter expressions are given as The first-

) . . and second-order phase-space gauge functions
asymptotic expansions in powers &f,

S, andS, in [(379 and(37b)] are chosen by demanding that
the first- and second-order gyrocenter Hamiltonidihg,

, (39 and H,,, be gyroangle-independent, respectively. From
(32b), (35b) and (379, we find the expression for the first-

where the lowest-order term8og,=Io4c and Hog,=Hgy. ~ ©OTder gyrocenter Hamiltonian
are given by the unperturbed guiding-center expressi2@)s

and(27), respectively. Thq first- and second-order terms for Higy=— {S1,Hogylgct @
the phase-space Lagrangian?ar&

P1gy=T1gci1-QogctdS;
[ogy=—i2-Qoge—i1- Qygetip-d(iy- Qoge)2+dS,

— 2
ng—rogy+ 65F19y+ 65F2gy+ s

— 2
Hgy—Hogy+ 65ngy+ E5H29y+ e

u
q)lgc_ - Algc
yC

=- {SlvHOQy}gc+Klgc- (38)

The phase-space gauge functidsare chosen to have the
following properties(for all n):

,(353

and the first- and second-order terms for the Hamiltonian are (S)=0 and asn/av_on, (393

ngy: ngc_ J1- dHOgc

] (35D where() denotes averaging with respectEc(with the other
Hogy=— 02-dHggc— 91 dHigc+9:1-d(g;- dHgge) /2

gyrocenter phase-space coordinates held constéiné first
choice in (399 simplifies the analysis while the second
Wheregn andSn are thenth-order genera‘[ing vector and the choice ensures that the time coordinate remains unaffected
phase-space gauge function, respectively368, where the by the gyrocenter extended phase-space transformation.
elements of the two-form . are defined as it6a), we have ~ Since we want, , to be gyroangle-independent, noting that
i Qge= gg(QgC)abde’ while in (350 we haveg,-dHg. the gyroangle-averaging operation commutes with the
=g2H4./Z% We note that, within the phase-space La-9uiding-center Poisson bracket, it can be shown that the first-
grangian formalism, the Hamilton equations are independerftfder gyrocenter Hamiltonian can be written as

of the choice of phase-space gauge functiSps Higy=(K1go). (39b)

The phase-space gauge functi®pis determined from the
: equation
C. Gyrocenter phase-space Lagrangian

We choose the generating vectgysin [ (353 and(35b)] {S1:Hogylge=Kage— (Kige) =Kige, (403
so that the gyrocenter phase-space Lagrang¥dh retains \yhich is obtained by subtractin@9b) from (38). This equa-
the guiding-center form given b{26) tion can also be written aElch y~1L,S;, where the op-
eratorL =y d/dt+ (py/m) b-V+ wg d/96 denotes the total
proper-time derivative along unperturbed particle orbits. To
lowest order in the low-frequency gyrokinetic orderi(gg),
e, (I'gy),=0 for n=1 and the gyrocenter phase-spaceihe gperatot . becomeswg 9/36, and the solution fos, is

transformation is canonical. He#& = (t,W,R,p|,u,0) are  ritten explicitly as
the new gyrocenter phase-space coordinaes(45a—(45f)
below].

Solving (353 for I'4,=0 andI',4,=0 (by inverting the
Lagrange()-matrice$ yields the following expressions for
the first- and second-order generating vectors,

rgyz(gMH” b|-dR+(mdq) udo—Wdt,  (36)

81=7L;1ngc5(;/wB)J ngcdE (40b)

We easily verify that39g is satisfied fom= 1. We note that
for high-frequency gyrokineticg the inverse operatd::;l

_ q I involves an integration along unperturbed particle orbits.
01=1{S1, 2% 4+ 2 Auge IRTPZ% e (378 Next, from (35b) and[(37a—(37b)], we find the expres-
sion for the second-order gyrocenter Hamiltonian

9 — —u
HZQyZE Algc' R+p,? 'Algc
gc

S _ _ 1
whereG,=g;-d(R+p)={S1,R+plgc andBygc=V X Asqc _§<{7L;1KlgC1Klgc}gc>i (41)

is the perturbed magnetic field expressed in guiding-center

phase-space coordinates. At this point, the gauge functionghere the second term is evaluated only to lowest order in
S; and S, are still arbitrary; they will be chosen next by the low-frequency gyrokinetic orderin@3). This expression
demanding that the gyrocenter Hamiltonidg, be indepen-  shows how ponderomotive effects enter into the low-
dent of the gyrocenter gyroangte frequency gyrokinetic formalisrtthe derivation of a second-

and

— q —
gg:{SZvZa}gc"_ zGlX Blgc'{R+p=Za}QCv (37b)
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order ponderomotive Hamiltonian for arbitrary frequencies is _ q . 5
discussed in Ref. 33 The two terms in(41) contain the pH:pH_G(sEAlgc'b"_ O(€5), (450
following relativistic corrections:
T 1 uu — wg[dS Qq ip 2
_ _ =p—€s—| —=+ Ay —=| +O(€%), (45e
[R-I—p,% ——_(I _22) (429 Mm=H B g0 ¢ 1gc 70 (€5
Vg MY\ yC
and — wg | IS d
0= 0+65FB<—_1+9A1QC-—E)+(’)(E§ , (45f)
op C o

{y L;lKlgc’Klgc}gc>
1 where the low-frequency gyrokinetic orderi(@p) was used.
=;<{|_;1R19C,ngc}gc>_ __<('|Zlgc)2>, (42b) We note from(45¢) that the gyrocenter positioﬁis shifted
ymc from the guiding-center positioR as a result of the electro-
magnetic fluctuations and that this shift has both gyroangle-

where the first terms if(42a and(42b)] correspond to rela- !
dependent and gyroangle-independent parts. Furthermore,

tivistic generalizations of the classical terns—o) while

the second terms are relativistic corrections. the gyrocenter parallel momentump can be interpreted from
The nonlinear gyrocenter Hamiltonian functiody, (450 as a canonical momentum, whilé5e shows that the
=Hggyt €5H1gyt+ - -+ can now be written as gyrocenter relativistic magnetic momeatis constructed as
_ _ an asymptotic expansion in powerseafwhich makes it into
Hgy=ymc+Wg,—W, (438 an adiabatic invariant for gyrocenter Hamiltonian dynamics

where the nonlinear perturbation gyrocenter Hamiltonian is[S€€(46d below.
2

65 —_— 1~ ~
Vo= 66<Klgc>_E<{7L71Klgchlgc}gc> . o o
F. Nonlinear relativistic gyrocenter Hamiltonian

u dynamics

R+P'% 'Algc> : (430 The nonlinear relativistic gyrocenter Hamilton equations
gc dZ%/dt={Z%Hg}4c are

We note that all perturbation effects appear exclusively in _

the gyrocenter Hamiltonia3a), while the gyrocenter Pois- dW: IV gy

qZ
2
+ 652—02 Algc'

son bracket is identical to the unperturbed guiding-center  dt at (469
Poisson brackef29a. In the classical limit, we recover the
previous nonrelativistic nonlinear gyrokinetic restftdom dR 5” v \B* cb PP —
(43b) d—: _—+Tgy)—*+—*>< :VB"‘V\ng ,
t \ym  op JBf aBf vy
(46b)

E. Gyrocenter phase-space coordinates * S —

y phase-sp - dy__ B_*.(ivswqrgy), (460

The new gyrocenter phase-space coordinafe% dt Bi \v

=(t,W,R,p,u,0) are related to the old guiding-center —
phase-space coordinateg®=(t,W,R,p,u,0) by the d_’“Eo (460)
asymptotic expansion in powers ef, t '

72=7"— ;03— €3( 05— 10:-dg}) +O(€d), (44  In (46b), the termaWy,/ap; is associated with perturbed

a a ) . ) parallel motion and perturbed curvature drift, while the term
wheregj andg; are defined 378 and(37h). When(44) is vV ated with dicul urkes B
written explicitly using[(378 and (37b)], we find first that gy IS associated wi ! a perpendicuiar pertur
the time coordinate is unaffected by the gyrocenter extendefiow. In (469), the termB* - V¥, includes the effects of a

phase-space transformation parallel electric field, although the usual induction term is
_ absent from the right side ¢46¢). This is due to the fact that
t=t(to all orders ine;), (453 p,, as defined in(45d), is the parallel component of the
because of the choid@94 for the phase-space gauge func- gyrocenter canonical momentum; this important feature pro-
tions S,. The remaining expressions are vides useful computational advantages in gyrokinetic particle
B simulations?>3* We also note that the nonlinear relativistic
W=W+ O(€3), (45b)  gyrocenter Hamilton equatiori$46a—(460)] satisfy the in-
R compressibility condition
— cb — o} TN ) .
R=R+e;——X| VS + ZAy4c| + €5=Db+O(¢€y), J dz2
qBj ¢ p) — | Br——| =0 47)
(450 gza\ | dt
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Note that sincq?” is the canonical parallel momentufsee

(450], the perturbed parallel induction terim- Aqgcl ot

A. J. Brizard and A. A. Chan

We note that, by construction, the gyrocenter Vlasov distri-
bution function fy, is independent of the gyrocenter gy-

does not appear in the gyrocenter Hamilton equationgoangled to all orders ine;.

[(469—(460)].

V. NONLINEAR RELATIVISTIC GYROKINETIC
VLASOV-MAXWELL EQUATIONS

A. Nonlinear relativistic gyrokinetic Vlasov equation

The nonlinear relativistic gyrokinetic Vlasov equation in

gyrocenter phase space is simply

{fgy.Hgy}gc=0, (483
or using(36) and (293,
of B* oH cb — —
0=—ﬁﬂ+ — —F+ —— X VHg, |- Vg,
Bj Jm  aBj
B* — of
— — VHgy—2. (48b)
B P
By defining the new gyrocenter Hamiltonian
hgy=Hgy+W=ymc+¥ (499

B. Low-frequency gyrokinetic Maxwell equations

The low-frequency gyrokinetic Maxwell equations are

- :—;vag(r,t)=2 qf d®Zs3(R+p—r)

(Ua
=
yC
where A%=(d,,A;), u*=(yc,u), and we use the gauge
condition V,-A;=03 Also in (51), we find d®z
=mB" d°Rdpjdud6, the terms*(R+ p—r) relates the par-
ticle source point at which the fields are evaluated to the
gyrocenter positiorR, and(ignoring terms of ordesﬁ),
_ qugc =,
%yfgy= fgy+ Eﬁ{slafgy}gc+ 65T . {R+p,fgy}gc .
(52

Here terms of ordeﬁf; are necessarily omitted if62) to
ensure energy conservatigh®3’

Tofay(Rpj 1,61, (BD)

the nonlinear relativistic gyrokinetic Vlasov equation can

also be written as

af
9y -
+{fgy:Ngytgc=0.

ot (49b)

C. Nonlinear gyrokinetic energy conservation law

The nonlinear relativistic gyrokinetic Vlasov-Maxwell
equations(48b and(51) possess the following energy con-
servation law:

From (48b) we recover the linear gyrokinetic Vlasov equa-
tion previously derived by LittlejohA* who used the Hamil-
tonian Lie-perturbation method, and by Tsai, Van Dam and
Chen?? who used the standard method of gyroanglese  energy is conserved to the order considered in this work.
averaging the relativistic Vlasov equation directly. Here, the field energy is
The relationship between the gyrocenter Vlasov distribu-

tion function fg,, the guiding-center Vlasov distribution
function f,., and the particle Vlasov distribution functidn
is discussed in terms of two operatéfsthe guiding-center
operator7,. and the gyrocenter operatgg, . To lowest or-

d 3
gt EmtEcu=0(e), (53)

d3x ) 2
EMEJEQ%VL@H +[B+esV . XA, (54)

and the gyrokinetic particle energy is

der in magnetic-field nonuniformity, the guiding-center op- _ 65 -1,
erator is Ty;=exp(— ep-V) and the relation between the Eev=2 | d Z(T gy (YME))Tgy, (55)
guiding-center Vlasov distribution functiofy. and the par- where

ticle Vlasov distribution functiorf is expressed in terms of
the scalar-invariance property: fq(R,pj,u,0,t)
=T ¢ f(R,pj. 1. 0,) = F(R+p,pj, 1, 0,0).

For the gyrocenter transformation, the scalar-invarianc

property yieldsf g, =7 'f ., where

<T§yl(;mcz)>5 hgy— €50 (P1g0) + €50 ({S, 7(Dlgc}g(c5>-6)

&ve note that the energy conservation I&8®) is consistent
with the time-scale ordering of the background fields dis-
cussed in Sec. IVA.

We demonstrate the approximate energy conservation
law (53) as follows. After some simple manipulations, the
expression fod(Ey, + Egy)/dt can be written as

(509

with g; and g, given in [(378 and37b)]. When (509 is
expanded up to second orderédp, we find

%yzexq:sggl~d+e§gz-d+ ),

foy=7 gy Tgc=Fgc— €591 dfgc

— €30, dfge—30:-d(g;-dfg) 1+ O(€D).
(50b)

2
65 ~
2 f dGZ (ﬁtfgy)hgy_ Efgy«{’?tsvilgc}gc)

_<{Sl1atngc}gc>)}- (57)
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The first term on the right vanishes because

((7tfgy) hgy: - {fgy'hgy}gcht:lyE - {(fgyhgy)’hgy}gc'
(583
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