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Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations
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A set of self-consistent nonlinear gyrokinetic equations is derived for relativistic charged particles
in a general nonuniform magnetized plasma. Full electromagnetic-field fluctuations are considered
with spatial and temporal scales given by the low-frequency gyrokinetic ordering. Self-consistency
is obtained by combining the nonlinear relativistic gyrokinetic Vlasov equation with the
low-frequency Maxwell equations in which charge densities and current densities are expressed in
terms of moments of the gyrokinetic Vlasov distribution. For these self-consistent gyrokinetic
equations, a low-frequency energy conservation law is also derived. ©1999 American Institute of
Physics.@S1070-664X~99!01012-5#
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I. INTRODUCTION

Relativistic particles, particularly electrons, are found
many plasmas, including fusion plasmas,1–4 space plasmas5

and astrophysical plasmas.6 In addition to the general ques
tion of how these particles are transported and accelerate
relativistic energies, the particles are of interest because
can cause significant damage. In fusion plasmas, for
ample, relativistic runaway electrons can cause serious d
age to the containment vessel.3,4 In space plasmas, on th
other hand, relativistic electrons trapped in the Earth’s rad
tion belts are hazardous to spacecraft hardware7 and they are
a radiation hazard to astronauts.8

In high-temperature tokamak plasmas, multi-MeV ru
away electrons are typically generated during the star
phase or following plasma disruptions.3 After a disruption, a
large fraction of the stored magnetic energy in the tokam
plasma can be transferred to the runaway-electron pop
tion. The primary mechanism for the generation of relativ
tic runaway electrons involves an accelerating electric fi
strong enough to overcome the frictional drag produced
Coulomb collisions.4,9,10The confinement properties of rela
tivistic test-particles in tokamak plasmas have been inve
gated in Refs. 11 and 12; these studies reveal that
guiding-center approximation is appropriate for relativis
runaway-electron dynamics in axisymmetric and no
axisymmetric tokamak plasmas.

In space plasmas there is observational evidence
relativistic electrons may be produced during magne
storms by a drift-resonant exchange of energy with hyd
magnetic waves in the Earth’s magnetosphere.13,14The drift-
resonant interaction conserves the first adiabatic invar
and transports particles to regions of higher magnetic fi
magnitude, thereby increasing their energy.15,16 The time-
scale separation between the short gyroperiod and the
drift-period motivates the asymptotic removal of the gyr
motion time scale from theexactdynamical description. The
resulting reduced dynamical description is expressed
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terms of guiding-center and gyrocenter dynamics wher
the equations of motion are independent of the fast gyrom
tion degree of freedom.

In previous work on radiation-belt transport, variou
Fokker-Planck transport equations for the average ph
space density as a function of the three adiabatic invaria
are used.5,17 These radiation-belt transport equations are
sentially quasilinear transport equations in the space of
three adiabatic invariants. It is important to note that the
equations are not derived from first principles; rather,
form of the equation is assumed and the transport coe
cients for diffusion and drag are given semiempirical form
and then adjusted by attempting to reproduce measured
ticle fluxes.

Recently, nonrelativistic quasilinear transport equatio
have been derived to describe the interaction of nonrela
istic particles with magnetospheric hydromagnetic wave18

In these equations it is shown that the wave-particle inter
tions result in a drag-like term which can be comparable
the diffusion term. We expect that there will be a simil
drag-like contribution in the relativistic quasilinear transpo
equation; in the past this contribution has been ignored
cause the drag term has been assumed to arise only
Coulomb scattering. Chen’s derivation18 began with the non-
relativistic nonlinear gyrokinetic Vlasov equation derived
Brizard.19,20

In this paper a nonlinear relativistic gyrokinetic Vlaso
equation is derived, partly as a starting point for a later de
vation of relativistic quasilinear transport equations for spa
physics applications, and partly because it is interesting in
own right as a relativistic generalization of the earlier wo
of Brizard.20 Other applications might include the gyrok
netic particle simulation of relativistic runaway electro
transport in tokamak plasmas. The nonlinear relativistic
rokinetic equations derived here also extend the earlier w
by Littlejohn21 and by Tsai, Van Dam and Chen,22 who de-
rived linear relativistic gyrokinetic equations.
8 © 1999 American Institute of Physics
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Finite gyroradius effects are usually small for electro
but they are not necessarily negligible, especially for hig
relativistic electrons such as those found in fusion and sp
plasmas.23 For generality we retain the finite gyroradius e
fects in this paper; in a future paper we will obtain the dri
kinetic equations from the appropriate limit of the finite g
roradius equations.

The remainder of the paper is organized as follows.
Sec. II, relativistic Vlasov-Maxwell equations are presen
as a foundation for work done in future sections. In Sec.
an outline of the derivation of relativistic Hamiltonia
guiding-center theory based on the phase-space Lagran
Lie-transform perturbation method is presented. Sections
and V, where relativistic Hamiltonian gyrocenter theory a
nonlinear relativistic gyrokinetic Vlasov-Maxwell equation
respectively, are derived, contain the new results in nonlin
relativistic gyrokinetic theory. Lastly, Sec. VI presents
summary of our work and discusses its applications.

II. RELATIVISTIC VLASOV-MAXWELL EQUATIONS

In this section, we present two Hamiltonian formulatio
of the relativistic Vlasov-Maxwell equations. Each formul
tion is defined in terms of a Hamiltonian functionH and a
Poisson bracket$,% derived from a phase-space Lagrangia
The first formulation is based on a covariant description
relativistic charged particle dynamics in an arbitrary elect
magnetic field in terms of the phase-space coordinatesx0

5ct,x; p05E/c,p), where (x0,x) denotes the space-tim
position of a particle and (p0,p) denotes its momentum
energy coordinates. The covariant formulation treats sp
and time on an equal footing. The second formulation, on
other hand, treats time and space separately and makes u
the extended phase-space coordinates (x,p;t,w), where the
energy coordinatew is canonically conjugate to timet.

For each Hamiltonian formulation, a relativistic Vlaso
equation$ f ,H%50 for the Vlasov distribution functionf is
written in terms of the Hamiltonian functionH and the Pois-
son bracket$,%. Next, self-consistent relativistic Maxwe
equations are presented in which the charge and current
sities are expressed in terms of moments of the relativi
Vlasov distribution functionf. Lastly, an exact energy
momentum conservation law for the self-consistent relativ
tic Vlasov-Maxwell equations is presented.

A. Relativistic charged particle dynamics

The relativistic motion of a particle of rest-massm and
chargeq is described in eight-dimensional phase space
terms of the space-time coordinatesxa5(x05ct,x) and the
four-momentumpa[mua5(p0,p), where the four-velocity
is

ua[
dxa

dt
[~u05gc, u5gv!, ~1!

with g[(12uvu2/c2)21/2 the relativistic factor andd/dt
5g d/dt the derivative with respect to proper time.

The equation of motion for the four-momentumpa is
,
y
ce
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,
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dpa

dt
5

q

c
Fab ub , ~2!

where summation over repeated indices is assumed and

Fab[]aAb2]bAa ~3!

is the Faraday tensor.24 Here, the space-time contravaria
derivative is ]a[gab ]b5(2 ]/]x0, ¹), where gab

5diag (21,11,11,11) is the space-like metric tensor, an

Aa5~F,A! ~4!

is the four-dimensional electromagnetic potential.

B. Noncanonical Hamiltonian structures

1. Covariant noncanonical Hamiltonian structure

We now show that the equations~1! and ~2! possess a
covariant~cov! Hamiltonian structure, i.e., they can be wri
ten as dZ a/dt5$Z a,H%cov, where Z a5(x0,x;p0,p) are
eight-dimensional noncanonical phase-space coordinateH
is the covariant relativistic particle Hamiltonian and$,%cov is
the covariant relativistic noncanonical Poisson bracket
eight-dimensional phase space.

To derive the covariant relativistic Poisson brack
$,%cov, we proceed along the same lines as with the non
ativistic case~see Ref. 25 for details!. We begin with the
covariant relativistic phase-space Lagrangian,

Gcov5S pa1
q

c
AaD dxa[GadZ a. ~5!

From the fundamental Lagrange brackets@Z a,Z b#[Vab ,
where26

Vab[
]Gb

]Z a
2

]Ga

]Z b
, ~6a!

we define the Lagrange (838) matrix with components
Vab ,

S ~q/c! Fab 2 gab

gab 0
D , ~6b!

where each component in~6b! is a 434 matrix. The inverse
of the Lagrange matrix~6b! defines the Poisson matrix,

S 0 gab

2 gab ~q/c! Fab
D , ~7!

whose elements in turn define the fundamental Pois
brackets$Z a,Z b%,

$xa,xb%cov[0, $xa,pb%cov[gab, and $pa,pb%cov[
q

c
Fab.

The Poisson bracket$A,B%cov of two functionsA andB on
eight-dimensional phase space is thus constructed from t
fundamental Poisson brackets to yield

$A,B%cov[gabS ]A
]xa

]B
]pb

2
]A
]pb

]B
]xaD 1

q

c
Fab

]A
]pa

]B
]pb

.

~8!
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We note that the phase-space coordinatesZ a are noncanoni-
cal because of the second term in the Poisson bracket~8!.
Furthermore, the Poisson bracket~8! is guaranteed to satisf
the Jacobi identity as well as other Poisson-bracket pro
ties since it was derived from a phase-space Lagrangian

We now determine the relativistic Hamiltonian functio
H by requiring thatdZ a/dt5$Z a,H%cov. SubstitutingA
5xa or pa andB5H in ~8!, we find

$xa, H%cov5gab
]H
]pb

and

$pa,H%cov52 gab
]H
]xb

1
q

c
Fab

]H
]pb

.

We recover~1! and ~2! from these equations if the Hami
tonian functionH is

H[
1

2m
gab papb5

m

2
gabuaub. ~9!

The covariant dynamical Eqs.~1! and~2! can thus be written
in Hamiltonian form,

dxa/dt5$xa,H%cov5pa/m[ua

dpa/dt5$pa,H%cov5~q/mc! Fab pb[~q/c! Fab ub
J . ~10!

Note that covariant relativistic charged-particle motion tak
place on the surfaceH[2mc2/2, where the right side is
obtained by substituting~1! into ~9!. Hence the Hamiltonian
H is a Lorentz scalar.24 More importantly, however, the
Hamiltonian function~9! has no classical analog~i.e., the
limit c→` is not defined!. This property of the covarian
Hamiltonian~9! forces us to seek an alternative Hamiltoni
formulation for relativistic charged-particle motion with
well-defined classical limit.

2. Extended phase-space Hamiltonian structure

The relativistic Hamilton Eqs.~1! and~2! can alternately
be written in terms of the reference-frame timet as dza/dt
[$za,H%, where za[(x,p;t,w) are extended phase-spa
coordinates and the Hamiltonian structure is given in ter
of the extended relativistic Hamiltonian~for positive-energy
particles!,

H[g mc21q F2w, ~11!

where g[A11up/mcu2 and, since the relativistic charged
particle motion now takes place on the surfaceH50,
w5g mc21q F represents the total energy of a charged p
ticle ~including its rest energy!. In contrast to the covarian
Hamiltonian ~9!, the Hamiltonian~11! has a well-defined
classical limit and is an energy-like quantity. The pha
space Lagrangian, on the other hand, is

G[S p1
q

c
AD •dx2w dt, ~12a!
r-

s

s

r-

-

and its associated noncanonical Poisson bracket is derive
the same procedure used in going from~5! to ~8! above; for
two arbitrary functionsF andG on extended phase space,
is given as

$F,G%[S ]F

]w

]G

]t
2

]F

]t

]G

]wD1S ¹F•
]G

]p
2

]F

]p
•¹GD

1
q

c FB–
]F

]p
3

]G

]p
1

]A

]t
–S ]F

]p

]G

]w
2

]F

]w

]G

]p D G .
~12b!

Using ~11! and~12b!, the relativistic noncanonical Hamilton
equations for charged particle motion are now

dt

dt
[2

]H

]w
51, ~13a!

dw

dt
[

]H

]t
2

q

c

]A

]t
•

]H

]p
5qS ]F

]t
2

v

c
•

]A

]t D , ~13b!

dx

dt
[

]H

]p
5

p

mg
5v, ~13c!

dp

dt
[2 ¹H1

q

c

]A

]t

]H

]w
1

q

c

]H

]p
3B5qS E1

v

c
3BD .

~13d!
This set of Hamilton equations presents an alternative
scription to the Hamilton equations~10! derived within the
covariant formulation. In the present formulation, we no
from ~13a! that the time coordinatet can be identified with
the Hamiltonian orbit parameter.

C. Relativistic Vlasov equations

The relativistic Vlasov equation describes the fact th
the Vlasov distribution function is conserved along a relat
istic Hamiltonian orbit in phase space. First, using the co
riant formalism discussed above, this statement is ma
ematically expressed as

dF
dt

[$F,H%cov50, ~14!

whereF(x,p) is the covariant Vlasov distribution functio
on eight-dimensional phase space. It can be explicitly writ
as

05ua
]F
]xa

1
q

c

]F
]pa

Fabub , ~15a!

or

05
]

]Z a S dZ a

dt
FD , ~15b!

since Hamilton’s equations are incompressib
](dZ a/dt)/]Z a[0.

The covariant relativistic Vlasov equation~14! has one
additional degree of freedom compared to its non-relativis
version. This is due to the fact that the energy coordinatep0

is not really independent of the other coordinates because
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Hamiltonian~9! is constrained to be equal to2 mc2/2 ~i.e.,
papa52 m2c2). Hence the covariant Vlasov distributio
function F(x,p) must vanish forp0Þg mc ~for positive-
energy particles!. This thus implies that the covariant Vlaso
distributionF(x,p) should be written as27

F~x,p![cdS H1
mc2

2 D f ~x,p,t !

5d~p02g mc!
f ~x,p,t !

g
, ~16!

where f (x,p,t) is the Vlasov distribution on the six
dimensional phase space with coordinates (x,p) and g[(1
1up/mcu2)1/2 is the relativistic factor expressed in terms
the relativistic kinetic momentump; note that f (x,p,t) is
explicitly independent of the energy coordinatew. When
~16! is substituted into~14!, one obtains

05cdS H1
mc2

2 D $ f ,H%cov

[d~p02g mc!

3F] f

]t
1

u

g
•¹ f 1qS E1

u

gc
3BD • ] f

]pG . ~17a!

After performing ap0-integration on~17a!, we obtain the
relativistic Vlasov equation on 611 phase space,

05
] f

]t
1v•¹ f 1qS E1

v

c
3BD • ] f

]p
, ~17b!

which looks exactly like the nonrelativistic Vlasov equatio
except thatp is the relativistic kinetic momentump5mgv.27

The relativistic Vlasov equation~17b! can also be written as

d f

dt
[$ f ,H%50, ~18!

where the relativistic Hamiltonian is given by~11! and the
Poisson bracket is given by~12b!. Note that this new Hamil-
tonian formulation has separated the components of the e
tromagnetic four-potential (F,A): the electrostatic potentia
F now appears in the Hamiltonian~11! while the magnetic
vector potentialA and its derivatives remain in the phas
space Lagrangian~12a! and the Poisson bracket~12b!.

D. Self-consistent relativistic Vlasov-Maxwell
equations

To obtain a self-consistent relativistic Vlasov-Maxwe
theory one combines the covariant relativistic Vlasov eq
tion, ~14! or ~18!, with the Maxwell equations

]b Fab~r !54p( qE d8Zd4~x2r !
pa

mc
F~x,p!

54p( qE d6zd3~x2r !
pa

mcg
f ~x,p;t !,

~19!

where the sum is over particle species andr a5(ct,r ) de-
notes the space-time location where the charge and cu
c-

-

nt

densities are evaluated. The second expression on the
side of ~19! is obtained by substituting~16! into the first
expression and performing thep0-integration.

The relativistic Vlasov-Maxwell equations~14! or ~18!
and ~19! satisfy an energy-momentum conservation law

]

]xa
~TM

ab1TV
ab!50, ~20a!

where the energy-momentum stress tensorTab[TM
ab1TV

ab

is divided into the Maxwell~field! part,

TM
ab[

1

16p
~FmnFnm!gab2

1

4p
FamgmnFnb, ~20b!

and the Vlasov~particle! part,

TV
ab[( E d4pmuaubF5( E d3p

muaub

g
f . ~20c!

Of particular importance in the development of se
consistent Hamiltonian gyrokinetic particle simulation tec
niques is the energy conservation law

]E
]t

1¹•S50, ~21a!

where the energy density is

E5
1

8p
~ uEu21uBu2!1( E d3pgmc2f , ~21b!

and the energy-density flux is

S5
c

4p
E3B1( E d3pmc2 uf . ~21c!

We return to this conservation law in Sec. V C, where
approximate energy conservation law is derived for the n
linear relativistic gyrokinetic Vlasov-Maxwell equations.

In summary, two Hamiltonian formulations for relativis
tic charged-particle motion are presented in this section:
covariant formulation based on the Hamiltonian~9! and the
Poisson bracket~8!; and the extended phase-space formu
tion based on the Hamiltonian~11! and the Poisson bracke
~12b!. For each formulation, self-consistent relativist
Vlasov-Maxwell equations@~14! or ~18! and ~19!# are given
in addition to the exact energy-momentum conservation
~20a!. In the remainder of this paper, we adopt the extend
phase-space formulation since its Hamiltonian function ha
well-defined classical limit and the separation of the tim
coordinate from the other phase-space coordinates allow
to transform the latter coordinates without transforming
time coordinate itself.

III. RELATIVISTIC HAMILTONIAN GUIDING-CENTER
THEORY

A. Preliminary coordinate transformation

Relativistic charged-particle motion in a strong magne
field is characterized by three disparate time scales: the
gyromotion time scale associated with gyration abou
single magnetic field line, the intermediate parallel~or
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bounce! time scale associated with motion along a field lin
and the slow drift time scale associated with motion acr
magnetic-field lines.28

In the following analysis~only results are presente
here!, we work in a preferred reference frame in which t
background magnetic fieldB0[¹3A0 is time independen
(]A0 /]t[0) and the background electrostatic fieldF0 is
zero. We note that the choiceF0[0 is not crucial to the
present analysis and that nonrelativistic gyrokinetic theory
the presence of background nonuniform electrostatic fie
has been systematically derived elsewhere using phase-s
Lagrangian methods.19,29In the present paper, any quasista
electrostatic potential is thus treated as a perturbation.
further note that the covariant formulation of relativist
guiding-center Hamiltonian theory has been developed
Ref. 30 in which the background electromagnetic field
expressed in terms ofF0 andA0 .

The analysis begins with the introduction of the follow
ing local momentum coordinates (pi0 ,m0 ,u0),

p[pi0 b̂2A2mm0B0~ âcosu01 ĉsinu0!, ~22!

where pi0[mgv•b̂ is the component of the relativisti
momentum parallel to the local background magnetic fi
(B0•b̂[B0), m0[mg2uv'u2/2B0 is the relativistic magnetic
moment, whileu0[tan21@(2p• ĉ)/(2p•â)# is the local gy-
rorangle, and (â,b̂,ĉ) form a right-handed orthogonal uni
vector set. The Jacobian for this preliminary coordin
transformation ismB0 .

Inserting the local momentum coordinates into~12a!, the
unperturbed phase-space Lagrangian is

G0[S q

c
A01pi0 b̂1mvB

]r0

]u0
D •dx2wdt, ~23!

wherevB[qB0 /mc is the signed~rest-mass! gyrofrequency
and the lowest-order relativistic gyroradius vectorr0 is

r0[
b̂3u

vB
5

1

vB
A2m0B0

m
~ ĉcosu02âsinu0!, ~24!

while the unperturbed Hamiltonian function is

H05mc2 A11~2m0B0 /mc2!1~pi0 /mc!22w. ~25!

After this preparatory transformation, we now proceed w
the asymptotic elimination of the fast gyromotion time sc
from the relativistic Hamiltonian system represented by~23!
and ~25!.

B. Relativistic guiding-center Hamiltonian dynamics

Using the phase-space Lagrangian Lie-perturba
method on the unperturbed phase-space Lagrangian~23! and
the unperturbed Hamiltonian~25!, we obtain~to zeroth-order
in magnetic-field nonuniformity! the unperturbed relativistic
guiding-center (gc) phase-space Lagrangian,

G0gc5S q

ec
A01pi b̂D •dR1e ~mc/q! m du2W dt,

~26!
,
s

n
s
ace

e

in
s

d

e

n

and the unperturbed relativistic guiding-center Hamilton
function

H0gc5g mc22W

[mc2 A11~2mB0 /mc2!1~pi /mc!22W. ~27!

In ~26!, R denotes the guiding-center position, (pi ,m,u) are
the guiding-center momentum coordinates, and (W,t) are the
guiding-center energy coordinate and time coordinate~we
henceforth omit the subscript 0 to denote the backgro
magnetic field!. In addition, the dimensionless parametere
!1 denotes terms of order of the ratio of the gyroradiusuru
over the magnetic-field nonuniformity length scaleLB ~see
Ref. 28 for details!.

The relation between the guiding-center phase-space
ordinatesZa5(t,W,R,pi ,m,u) and the local phase-spac
coordinatesza5(t,w,x,pi0 ,m0 ,u0) is given to lowest order
in magnetic-field nonuniformity as

w5W

x5R1e r

pi05pi

m0 5m

u0 5u
6 , ~28!

wherer(m,u)[r0(m0 ,u0) denotes the gyroradius vector e
pressed in guiding-center coordinates.

The Poisson bracket corresponding to the relativis
guiding-center phase-space Lagrangian~26! is defined in
terms of two arbitrary functionsF and G on the guiding-
center eight-dimensional phase space as

$F,G%gc[S ]F

]W

]G

]t
2

]F

]t

]G

]WD1
B*

Bi*
•S ¹F

]G

]pi
2

]F

]pi
¹GD

2
B

mvBBi*
•¹F3¹G1

q

mcS ]F

]u

]G

]m
2

]F

]m

]G

]u D ,

~29a!

where the small parametere was omitted for simplicity and

B* [B1~cpi /q! ¹3b̂

Bi* [b̂•B* 5B@ 11~pi /mvB! b̂•¹3b̂ #
J . ~29b!

We note that the Jacobian for the guiding-center transfor
tion is Bi* /B and thus the Jacobian for the total transform
tion (t,w,x,p)→(t,W,R,pi ,m,u) is mBi* .

Using the relativistic guiding-center Hamiltonian~27!
and the relativistic guiding-center Poisson bracket@~29a! and
~29b!#, we obtain the relativistic guiding-center equations
motion: dZa/dt5$Za,H0gc%gc . The relativistic guiding-
center equations for the canonically conjugate coordina
(t,W) are

dt/dt52 ]H0gc /]W51

dW/dt5]H0gc /]t50 J . ~30a!

The relativistic guiding-center velocity
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dR

dt
5

]H0gc

]pi

B*

Bi*
1

cb̂

qBi*
3¹H0gc

[
pi

gm

B*

Bi*
1

cb̂

qgBi*
3m ¹B ~30b!

includes parallel motion (b̂•dR/dt[pi /gm) as well as the
gradient-B and curvature drifts~which characterize drift mo-
tion!. The relativistic guiding-center force equation for th
parallel momentum

dpi

dt
52

B*

Bi*
•¹H0gc[2

m B*

gBi*
•¹B, ~30c!

shows the mirror force associated with magnetic-field n
uniformity along the magnetic field lines~which character-
izes the bounce motion!. We point out that~30b! and ~30c!
agree with the standard relativistic guiding-center equati
found in Northrop28 if we neglect phase-space volum
preserving terms~such as the difference betweenBi* andB);
see~30e! below. Lastly, the relativistic guiding-center equ
tions for the canonically conjugate coordinates (m,u) are

dm/dt52 ~q/mc! ]H0gc /]u50

du/dt5~q/mc! ]H0gc /]m[vB g21J . ~30d!

These equations indicate that, through the asymptotic el
nation of the fast gyromotion time scale, an adiabatic inva
ant, the relativistic magnetic momentm, has been con-
structed. Hence, within relativistic guiding-cent
Hamiltonian theory, the relativistic magnetic momentm is a
constant of the motion. We also note that the guiding-cen
Hamilton equations@~30a!–~30d!# satisfy the identity

]

]Za S Bi*
dZa

dt D[0, ~30e!

i.e., the relativistic guiding-center Hamiltonian flow is in
compressible; note that the appearance of the JacobianBi* in
~30e! ensures the property of phase-space volume conse
tion.

IV. RELATIVISTIC HAMILTONIAN GYROCENTER
THEORY

When small-amplitude electromagnetic-field fluctuatio
F1(x,t) and A1(x,t) are introduced into the relativisti
guiding-center Hamiltonian theory, the guiding-center pha
space Lagrangian~26! and the guiding-center Hamiltonia
~27! are perturbed,

Ggc5G0gc1ed G1gc

Hgc5H0gc1ed H1gc
J , ~31!

whereed is an ordering parameter associated with the am
tude of the electromagnetic field perturbations.

The first-order guiding-center phase-space Lagrang
is20
-

s

i-
i-

er

a-

s

-

i-

n

G1gc5
q

c
A1~R1r,t !•~dR1dr![

q

c
A1gc•~dR1dr!,

~32a!

and the first-order guiding-center Hamiltonian is

H1gc5q F1~R1r,t ![q F1gc , ~32b!

where the perturbation fieldsF1 andA1 are evaluated at the
particle positionx[R1r at time t and we defineF1gc

[F1(R1r,t) and A1gc[A1(R1r,t). The subscriptgc is
used here to denote the fact that the fieldsF1(Ri ,R'1r,t)
and A1(Ri ,R'1r,t) have acquired gyroangle-dependen
through the gyroradius vectorr.

The perturbations in@~32a! and ~32b!# reintroduce gy-
roangle dependence into the guiding-center Hamiltonian
namics~31!. To remove this fast time-scale dependence,
again use the phase-space Lagrangian Lie-perturba
method. The outcome of this analysis yields thegyrocenter
Hamiltonian dynamics, i.e., perturbed guiding-center Ham
tonian dynamics from which the fast gyroangle depende
has been asymptotically eliminated. In what follows, w
shall treat the nonuniformity in the background field only
lowest order, i.e.,dr[(]r/]m)dm1(]r/]u)du in ~32a!.

A. Low-frequency gyrokinetic ordering

The electromagnetic-field perturbations in@~32a! and
~32b!# are assumed to satisfy the following space-time sc
ordering,31

v/vc5O~ed!

ki r5O~ed!

uk'u r5O~1!
J , ~33!

wherer andvc[vB /g are a typical gyroradius and gyrof
requency for a particle of massm and chargeq, respectively,
while (v,ki ,k') are the characteristic frequency, paral
and perpendicular wave numbers of the electromagnetic-fi
fluctuations of interest. This is the usual low-frequency g
rokinetic ordering31 in which the characteristic fluctuatio
time scales are long compared to the gyroperiod 2p/vc , the
characteristic wavelengths parallel to the magnetic fi
2p/ki are long compared to the typical gyroradiusr, while
the characteristic wavelengths perpendicular to the magn
field 2p/uk'u are comparable tor.

The space-time scale ordering used for the backgro
field, on the other hand, considers a characteristic time s
ordered atO(ed

3) compared to the gyroperiod 2p/vc and a
characteristic spatial scale ordered ate[O(ed) compared to
the typical gyroradiusr. Since the present nonlinear analys
retains only terms up to second order ined in the Hamil-
tonian, the background fields are thus considered as ti
independent nonuniform fields with weak spatial gradie
(r u¹ ln Bu!1).

B. Phase-space Lagrangian Lie-perturbation method

To remove the gyroangle dependence reintroduced
the electromagnetic field perturbations in~31!, we use the
phase-space Lagrangian Lie-transform perturbat
method20,32 wherein a new~gyrocenter! phase-space La
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grangianGgy and a new~gyrocenter! HamiltonianHgy are
constructed. These new gyrocenter expressions are give
asymptotic expansions in powers ofed ,

Ggy5G0gy1ed G1gy1ed
2 G2gy1•••

Hgy5H0gy1ed H1gy1ed
2 H2gy1•••

J , ~34!

where the lowest-order termsG0gy[G0gc and H0gy[H0gc

are given by the unperturbed guiding-center expressions~26!
and ~27!, respectively. The first- and second-order terms
the phase-space Lagrangian are20,32

G1gy5G1gc2 i 1•V0gc1dS1

G2gy52 i 2•V0gc2 i 1•V1gc1 i 1•d~ i 1•V0gc!/21dS2
J ,~35a!

and the first- and second-order terms for the Hamiltonian

H1gy5H1gc2g1•dH0gc

H2gy52 g2•dH0gc2g1•dH1gc1g1•d~g1•dH0gc!/2
J ,~35b!

wheregn andSn are thenth-order generating vector and th
phase-space gauge function, respectively. In~35a!, where the
elements of the two-formVgc are defined as in~6a!, we have
i n•Vgc5gn

a (Vgc)ab dZb, while in ~35b! we havegn•dHgc

5gn
a ]Hgc /]Za. We note that, within the phase-space L

grangian formalism, the Hamilton equations are independ
of the choice of phase-space gauge functionsSn .

C. Gyrocenter phase-space Lagrangian

We choose the generating vectorsgn in @~35a! and~35b!#
so that the gyrocenter phase-space Lagrangian~31! retains
the guiding-center form given by~26!

Ggy[S q

c
A1 p̄i b̂D •dR̄1~mc/q! m̄ dū2W̄ d t̄, ~36!

i.e., (Ggy)n[0 for n>1 and the gyrocenter phase-spa
transformation is canonical. HereZ̄a5( t̄ ,W̄,R̄,p̄i ,m̄,ū) are
the new gyrocenter phase-space coordinates@see~45a!–~45f!
below#.

Solving~35a! for G1gy[0 andG2gy[0 ~by inverting the
LagrangeV-matrices! yields the following expressions fo
the first- and second-order generating vectors,

g1
a5$S1 ,Z̄a%gc1

q

c
A1gc•$R̄1r̄,Z̄a%gc ~37a!

and

g2
a5$S2 ,Z̄a%gc1

q

2c
G13B1gc•$R̄1r̄,Z̄a%gc , ~37b!

whereG15g1•d(R̄1r̄)[$S1 ,R̄1r̄%gc and B1gc[¹̄3A1gc

is the perturbed magnetic field expressed in guiding-ce
phase-space coordinates. At this point, the gauge funct
S1 and S2 are still arbitrary; they will be chosen next b
demanding that the gyrocenter HamiltonianHgy be indepen-
dent of the gyrocenter gyroangleū.
as

r

re

-
nt

er
ns

D. Nonlinear gyrocenter Hamiltonian

The first- and second-order phase-space gauge func
S1 andS2 in @~37a! and~37b!# are chosen by demanding th
the first- and second-order gyrocenter HamiltoniansH1gy

and H2gy be gyroangle-independent, respectively. Fro
~32b!, ~35b! and ~37a!, we find the expression for the first
order gyrocenter Hamiltonian

H1gy52 $S1 ,H0gy%gc1qS F1gc2
ū

ḡc
•A1gcD

[2 $S1 ,H0gy%gc1K1gc . ~38!

The phase-space gauge functionsSn are chosen to have th
following properties~for all n):

^Sn&[0 and ]Sn /]W̄[0, ~39a!

where^& denotes averaging with respect toū ~with the other
gyrocenter phase-space coordinates held constant!. The first
choice in ~39a! simplifies the analysis while the secon
choice ensures that the time coordinate remains unaffe
by the gyrocenter extended phase-space transforma
Since we wantH1gy to be gyroangle-independent, noting th
the gyroangle-averaging operation commutes with
guiding-center Poisson bracket, it can be shown that the fi
order gyrocenter Hamiltonian can be written as

H1gy[^K1gc&. ~39b!

The phase-space gauge functionS1 is determined from the
equation

$S1 ,H0gy%gc5K1gc2^K1gc&[K̃1gc , ~40a!

which is obtained by subtracting~39b! from ~38!. This equa-
tion can also be written asK̃1gc[g21 LtS1 , where the op-
eratorLt[ḡ ]/]t1( p̄i /m) b̂–¹̄1vB ]/]ū denotes the tota
proper-time derivative along unperturbed particle orbits.
lowest order in the low-frequency gyrokinetic ordering~33!,
the operatorLt becomesvB ]/]ū, and the solution forS1 is
written explicitly as

S15ḡLt
21K̃1gc[~ḡ/vB!E K̃1gcdū. ~40b!

We easily verify that~39a! is satisfied forn51. We note that
for high-frequency gyrokinetics,22 the inverse operatorLt

21

involves an integration along unperturbed particle orbits.
Next, from ~35b! and@~37a!–~37b!#, we find the expres-

sion for the second-order gyrocenter Hamiltonian

H2gy5
q2

2c2 K A1gc•H R̄1r̄,
ū

ḡ
J

gc

•A1gcL
2

1

2
^$ḡ Lt

21K̃1gc ,K̃1gc%gc&, ~41!

where the second term is evaluated only to lowest orde
the low-frequency gyrokinetic ordering~33!. This expression
shows how ponderomotive effects enter into the lo
frequency gyrokinetic formalism~the derivation of a second
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order ponderomotive Hamiltonian for arbitrary frequencies
discussed in Ref. 33!. The two terms in~41! contain the
following relativistic corrections:

H R̄1r̄,
ū

ḡ
J

gc

5
1

mḡ
S I2

ūū

ḡ2c2D ~42a!

and

^$ḡ Lt
21K̃1gc ,K̃1gc%gc&

5ḡ^$Lt
21K̃1gc ,K̃1gc%gc&2

1

ḡmc2
^~K̃1gc!

2&, ~42b!

where the first terms in@~42a! and~42b!# correspond to rela-
tivistic generalizations of the classical terms (c→`) while
the second terms are relativistic corrections.

The nonlinear gyrocenter Hamiltonian functionHgy

5H0gy1ed H1gy1••• can now be written as

Hgy[ḡ mc21Cgy2W̄, ~43a!

where the nonlinear perturbation gyrocenter Hamiltonian

Cgy[ed^K1gc&2
ed

2

2
^$ḡ Lt

21K̃1gc ,K̃1gc%gc&

1ed
2 q2

2c2 K A1gc•H R̄1r̄,
ū

ḡ
J

gc

•A1gcL . ~43b!

We note that all perturbation effects appear exclusively
the gyrocenter Hamiltonian~43a!, while the gyrocenter Pois
son bracket is identical to the unperturbed guiding-cen
Poisson bracket~29a!. In the classical limit, we recover th
previous nonrelativistic nonlinear gyrokinetic results20 from
~43b!.

E. Gyrocenter phase-space coordinates

The new gyrocenter phase-space coordinatesZ̄a

5( t̄ ,W̄,R̄,p̄i ,m̄,ū) are related to the old guiding-cente
phase-space coordinatesZa5(t,W,R,pi ,m,u) by the
asymptotic expansion in powers ofed ,

Za5Z̄a2ed g1
a2ed

2~ g2
a2 1

2 g1•dg1
a!1O~ed

3!, ~44!

whereg1
a andg2

a are defined in~37a! and~37b!. When~44! is
written explicitly using@~37a! and ~37b!#, we find first that
the time coordinate is unaffected by the gyrocenter exten
phase-space transformation

t5 t̄ ~ to all orders in ed!, ~45a!

because of the choice~39a! for the phase-space gauge fun
tions Sn . The remaining expressions are

W5W̄1O~ed
2!, ~45b!

R5R̄1ed

cb̂

qBi*
3S ¹̄S11

q

c
A1gcD1ed

]S1

] p̄i
b̂1O~ed

2!,

~45c!
s

n

r

d

pi5 p̄i2ed

q

c
A1gc•b̂1O~ed

2!, ~45d!

m5m̄2ed

vB

B S ]S1

]ū
1

q

c
A1gc•

]r̄

]ū
D 1O~ed

2!, ~45e!

u5 ū1ed

vB

B S ]S1

]m̄
1

q

c
A1gc•

]r̄

]m̄
D 1O~ed

2!, ~45f!

where the low-frequency gyrokinetic ordering~33! was used.
We note from~45c! that the gyrocenter positionR̄ is shifted
from the guiding-center positionR as a result of the electro
magnetic fluctuations and that this shift has both gyroang
dependent and gyroangle-independent parts. Furtherm
the gyrocenter parallel momentump̄i can be interpreted from
~45d! as a canonical momentum, while~45e! shows that the
gyrocenter relativistic magnetic momentm̄ is constructed as
an asymptotic expansion in powers ofed which makes it into
an adiabatic invariant for gyrocenter Hamiltonian dynam
@see~46d! below#.

F. Nonlinear relativistic gyrocenter Hamiltonian
dynamics

The nonlinear relativistic gyrocenter Hamilton equatio
dZ̄a/dt5$Z̄a,Hgy%gc are

dW̄

dt
5

]Cgy

] t̄
, ~46a!

dR̄

dt
5S p̄i

ḡm
1

]Cgy

] p̄i
D B*

Bi*
1

cb̂

qBi*
3S m̄

ḡ
¹̄B1¹̄CgyD ,

~46b!

dp̄i

dt
52

B*

Bi*
•S m̄

ḡ
¹̄B1¹̄CgyD , ~46c!

dm̄

dt
[0. ~46d!

In ~46b!, the term]Cgy /] p̄i is associated with perturbe
parallel motion and perturbed curvature drift, while the te

¹̄Cgy is associated with a perpendicular perturbedE3B

flow. In ~46c!, the termB* •¹̄Cgy includes the effects of a
parallel electric field, although the usual induction term
absent from the right side of~46c!. This is due to the fact tha
p̄i , as defined in~45d!, is the parallel component of th
gyrocenter canonical momentum; this important feature p
vides useful computational advantages in gyrokinetic part
simulations.20,34 We also note that the nonlinear relativist
gyrocenter Hamilton equations@~46a!–~46c!# satisfy the in-
compressibility condition

]

]Z̄a
S Bi*

dZ̄a

dt
D 50. ~47!
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Note that sincep̄i is the canonical parallel momentum@see
~45c!#, the perturbed parallel induction termb̂•]A1gc /]t
does not appear in the gyrocenter Hamilton equati
@~46a!–~46c!#.

V. NONLINEAR RELATIVISTIC GYROKINETIC
VLASOV-MAXWELL EQUATIONS

A. Nonlinear relativistic gyrokinetic Vlasov equation

The nonlinear relativistic gyrokinetic Vlasov equation
gyrocenter phase space is simply

$ f gy ,Hgy%gc50, ~48a!

or using~36! and ~29a!,

05
] f gy

]t
1S B*

Bi*

]Hgy

] p̄i
1

cb̂

qBi*
3¹̄HgyD •¹̄ f gy

2
B*

Bi*
•¹̄Hgy

] f gy

] p̄i
. ~48b!

By defining the new gyrocenter Hamiltonian

hgy[Hgy1W̄5ḡmc21Cgy , ~49a!

the nonlinear relativistic gyrokinetic Vlasov equation c
also be written as

] f gy

]t
1$ f gy ,hgy%gc50. ~49b!

From ~48b! we recover the linear gyrokinetic Vlasov equ
tion previously derived by Littlejohn,21 who used the Hamil-
tonian Lie-perturbation method, and by Tsai, Van Dam a
Chen,22 who used the standard method of gyroang
averaging the relativistic Vlasov equation directly.

The relationship between the gyrocenter Vlasov distri
tion function f gy , the guiding-center Vlasov distributio
function f gc , and the particle Vlasov distribution functionf
is discussed in terms of two operators:20 the guiding-center
operatorTgc and the gyrocenter operatorTgy . To lowest or-
der in magnetic-field nonuniformity, the guiding-center o
erator is Tgc[exp(2 e r•¹) and the relation between th
guiding-center Vlasov distribution functionf gc and the par-
ticle Vlasov distribution functionf is expressed in terms o
the scalar-invariance property: f gc(R,pi ,m,u,t)
[T gc

21f (R,pi ,m,u,t)5 f (R1r,pi ,m,u,t).
For the gyrocenter transformation, the scalar-invaria

property yieldsf gy[T gy
21f gc , where

Tgy[exp~ed g1•d1ed
2 g2•d1••• !, ~50a!

with g1 and g2 given in @~37a! and~37b!#. When ~50a! is
expanded up to second order ined , we find

f gy[T gy
21f gc5 f gc2edg1•d fgc

2ed
2@g2•d fgc2

1
2g1•d~g1•d fgc!#1O~ed

3!.

~50b!
s

d
-

-

-

e

We note that, by construction, the gyrocenter Vlasov dis
bution function f gy is independent of the gyrocenter gy
roangleū to all orders ined .

B. Low-frequency gyrokinetic Maxwell equations

The low-frequency gyrokinetic Maxwell equations are

2
ed

4p
¹'

2 A1
a~r ,t !5( qE d6Z̄d3~R̄1r̄2r !

3S ūa

ḡc
D Tgyf gy~R̄,p̄i ,m̄,ū;t !, ~51!

where A1
a[(F1 ,A1), ūa[(ḡc,ū), and we use the gaug

condition ¹'•A150.35 Also in ~51!, we find d6Z̄

[mBi* d3R̄dp̄idm̄dū, the termd3(R̄1r̄2r ) relates the par-
ticle source pointr at which the fields are evaluated to th
gyrocenter positionR̄, and~ignoring terms of ordered

2),

Tgyf gy[ f gy1ed $S1 , f gy%gc1ed

qA1gc

c
•$R̄1r̄, f gy%gc .

~52!

Here terms of ordered
2 are necessarily omitted in~52! to

ensure energy conservation.20,36,37

C. Nonlinear gyrokinetic energy conservation law

The nonlinear relativistic gyrokinetic Vlasov-Maxwe
equations~48b! and ~51! possess the following energy con
servation law:

d

dt
~EM1EGV![O~ed

3!, ~53!

i.e., energy is conserved to the order considered in this w
Here, the field energy is

EM[E d3x

8p
~ ued¹'F1u21uB1ed¹'3A1u2!, ~54!

and the gyrokinetic particle energy is

EGV[( E d6Z̄^T gy
21~ ḡmc2!& f gy , ~55!

where

^T gy
21~ ḡmc2!&[hgy2edq ^F1gc&1ed

2q ^$S1 ,F1gc%gc&.
~56!

We note that the energy conservation law~53! is consistent
with the time-scale ordering of the background fields d
cussed in Sec. IV A.

We demonstrate the approximate energy conserva
law ~53! as follows. After some simple manipulations, th
expression ford(EM1EGV)/dt can be written as

( E d6Z̄F ~] t f gy!hgy2
ed

2

2
f gy~^$] tS1 ,K̃1gc%gc&

2^$S1 ,] tK̃1gc%gc&!G . ~57!
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The first term on the right vanishes because

~] t f gy! hgy52 $ f gy ,hgy%gchgy[2 $~ f gyhgy!,hgy%gc ,
~58a!

and the guiding-center Poisson bracket has the follow
property *d6Z̄ $a,b%gc[0 for arbitrary functionsa and b.
The second and third terms satisfy the following identity:

^$] tS1 ,K̃1gc%gc&5^$S1 ,] tK̃1gc%gc&

1^$H0gy ,$S1 ,] tS1%gc%gc&, ~58b!

which is obtained by using~40a! and the Jacobi identity fo
the gyrocenter Poisson bracket. Using the gyroang
independence of the guiding-center Poisson bracket~29a!
and the low-frequency gyrokinetic ordering~33!, the last
term in ~58b! yields

ed
2 ^$Hgy ,$S1 ,] tS1%gc%gc&5ed

2 $Hgy ,^$S1 ,] tS1%gc&%gc

[O~ed
3!,

and thus we recover the energy conservation law~53! for the
nonlinear relativistic gyrokinetic Vlasov-Maxwell equation
The relativistic gyrokinetic energy conservation law~53! is a
simple extension of the classical gyrokinetic conservat
law derived in Refs. 20, 36, and 37; note that this res
requires the Maxwell equations to retain only first-ord
terms in ed in ~51! and ~52!, while the gyrocenter Hamil-
tonian ~43a! and the gyrokinetic particle energy~55! retain
second-order terms.

VI. DISCUSSION

We now summarize our work. In Sec. II, relativist
Vlasov-Maxwell equations were presented as a founda
for the remainder of the paper. In Sec. III, an outline of t
derivation of relativistic Hamiltonian guiding-center theo
based on the phase-space Lagrangian Lie-transform pe
bation method was presented. Relativistic Hamiltonian gy
center theory@based on~46a!–~46d!# was constructed in Sec
IV while nonlinear relativistic gyrokinetic Vlasov-Maxwel
equations@~48b! and~51!# were derived in Sec. V. These tw
sections contain new results which extend previous nonr
tivistic nonlinear gyrokinetic work20 and previous linear rela
tivistic gyrokinetic work.21,22 A nonlinear relativistic gyroki-
netic energy conservation law@~53!# was also derived in Sec
V.

In future work we plan to initially obtain nonlinear rela
tivistic drift-kinetic equations by taking the small- (k'r)
limit of the gyrokinetic equations, and perhaps later consi
the finite gyroradius effects. From the nonlinear drift-kine
equations, following the work of Chen,18 quasilinear trans-
port equations can be obtained, presumably in a relativi
Fokker-Planck form. Such equations are expected to be
useful for evaluating, for example, the effectiveness of lo
frequency waves in the transport and acceleration
radiation-belt electrons.
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