RADIATION BELT
TRANSPORT THEORY USING
PHASE-SPACE LAGRANGIAN METHODS

Anthony A. Chan
Department of Physics and Astronomy, Rice University

Alain J. Brizard
Saint Michael’s College

Poster Session RP1, Thursday, November 1, 2001
43rd Annual Meeting of the Division of Plasma Physics
Long Beach, California, October 29 – November 2, 2001
• Outstanding problem in Magnetospheric Physics:

Transport and Energization of Radiation-Belt Particles during Magnetic Storms

• During magnetic storms:

 ○ MeV electron fluxes in Earth’s magnetosphere typically drop by a few orders of magnitude early in the storm.

 ○ Fluxes then rise to values one to two orders of magnitude above pre-storm values over a period of a day or two.
• Recent observational studies have shown strong correlations between these flux variations and the occurrence of hydromagnetic fluctuations in the 2 to 10 mHz (ULF) frequency range.

• For a 1-MeV test electron at geosynchronous orbit:

 o Cyclotron frequency in the range 1 – 3 kHz
 o Bounce frequency in the range 1 – 3 Hz
 o Drift frequency for equatorially-trapped electrons in the range of a few mHz.

• Simulation results by Elkington, Hudson, and Chan (1999) show enhanced MeV electron fluxes during MHD wave activity in ULF range.

![MeV Trapped Electrons can easily encounter Magnetic-Drift Resonances with ULF Waves](Stochastic Transport)
We present a First-Principles Derivation of a Reduced Relativistic Quasilinear Diffusion Equation in Axisymmetric Magnetic Geometry

- Stochastic transport due to low-frequency hydromagnetic fluctuations which conserve first adiabatic invariant

- Formalism allows for
 - bounce resonances
 - drift-bounce resonances
 - drift-resonances
• Relativistic Drift-Kinetic Vlasov Equation

\[\frac{\partial F}{\partial t} + \left(\frac{B^*}{B^*_{\parallel}} \frac{\partial H}{\partial p_{\parallel}} + \frac{c\hat{b}}{qB^*_{\parallel}} \times \nabla H \right) \cdot \nabla F - \frac{B^*_{\parallel}}{B^*_{\parallel}} \cdot \nabla H \frac{\partial F}{\partial p_{\parallel}} = 0 \]

where \(F \equiv \) relativistic electron drift-kinetic Vlasov distribution

\[B^* = B + \frac{cp_{\parallel}}{q} \nabla \times \hat{b} \quad \text{and} \quad B^*_{\parallel} = \hat{b} \cdot B^* \]

• Relativistic Drift-Kinetic Hamiltonian

\[H = \frac{\mathcal{E}}{\gamma - 1} Mc^2 + \epsilon q \left(\delta \phi - \frac{qv_{\parallel}}{c} \delta A_{\parallel} \right) + \epsilon J_g \omega_g \frac{\delta B_{\parallel}}{B} \equiv \mathcal{E} + \epsilon \delta H \]
• Drift-Kinetic Equation in \((X, \mathcal{E})\)-Space

\[
\left(\frac{\partial}{\partial t} + \dot{X}_0 \cdot \nabla \right) F = \epsilon \left[\frac{c\hat{b}}{qB^*_\parallel} \cdot \nabla F \times \nabla \delta H + \dot{X}_0 \cdot \left(\nabla \delta H \frac{\partial F}{\partial \mathcal{E}} - \nabla F \frac{\partial \delta H}{\partial \mathcal{E}} \right) \right]
\]

where the unperturbed relativistic GC velocity is

\[
\dot{X}_0 = \left(\frac{p_\parallel}{\gamma M} \right) \hat{b} + \frac{c\hat{b}}{\gamma qB^*_\parallel} \times \left(J_g \nabla \omega_g + \frac{p_\parallel^2}{M} \hat{b} \cdot \nabla \hat{b} \right)
\]

• Jacobian Identities \(\mathcal{D} \equiv B^*_\parallel / |v_\parallel| \)

\[
\nabla \cdot (\dot{X}_0 \mathcal{D}) \equiv 0 \quad \text{and} \quad \nabla \times \left(\frac{c\mathcal{D}\hat{b}}{qB^*_\parallel} \right) \equiv \frac{\partial}{\partial \mathcal{E}} (\dot{X}_0 \mathcal{D})
\]
QUASILINEAR ANALYSIS

- **Quasilinear Decomposition**

\[
F = F_0(I; \tau = \epsilon^2 t) + \epsilon \delta F
\]

○ Introduce

\[
\langle \cdots \rangle \equiv \begin{cases}
\text{fast-time-scale averaging} \\
\text{and} \\
\text{azimuthal-angle averaging}
\end{cases}
\]

- **Lowest-Order Slow-Time-Scale Evolution**

\[
\dot{X}_0 \cdot \nabla F_0 = 0
\]

- **Second-Order Slow-Time-Scale Evolution**

\[
\frac{\partial F_0}{\partial \tau} = \left[\dot{X}_0 \cdot \left(\nabla \delta H \frac{\partial \delta F}{\partial \mathcal{E}} - \nabla \delta F \frac{\partial \delta H}{\partial \mathcal{E}} \right) \right] \\
+ \frac{c \hat{b}}{q B^*} \cdot \left(\nabla \delta F \times \nabla \delta H \right)
\]
• Fast-Time-Scale (Order ϵ) Dynamics

 ○ Adiabatic-Nonadiabatic Decomposition

 \[\delta F \equiv \delta H \frac{\partial F_0}{\partial \mathcal{E}} + \delta G \]

 ○ Linearized Nonadiabatic Drift-Kinetic Equation

 \[\hat{\mathcal{L}} \delta G = i \hat{F} \delta H \]

 where

 \[\hat{\mathcal{L}} \equiv \frac{\partial}{\partial t} + \dot{X}_0 \cdot \nabla \]

 \[\hat{F} \equiv i \left(\frac{\partial F_0}{\partial \mathcal{E}} \frac{\partial}{\partial t} - \frac{c\hat{b}}{qB^*_\parallel} \cdot \nabla F_0 \times \nabla \right) \]
AXISYMMETRIC MAGNETIC GEOMETRY

- Magnetic Coordinates \((\psi, \varphi, s)\)

\[
\begin{align*}
B & \equiv \nabla \psi \times \nabla \varphi \\
\hat{b} & \equiv \frac{\partial X}{\partial s} = \nabla s + a(\psi, s) \nabla \psi
\end{align*}
\]

\[
\nabla \times \hat{b} = \hat{b} \times \left(\frac{\partial a}{\partial s} \nabla \psi \right)
\]

\[
B^* = B \hat{b} + \left(p\| \frac{\partial a}{\partial s} \right) \frac{c\hat{b}}{q} \times \nabla \psi
\]

\[
B^*_\parallel = B \rightarrow D = \frac{B}{|v\|}
\]
• Unperturbed Operators

\[\hat{\mathcal{L}} = \frac{\partial}{\partial t} + v_\parallel \frac{\partial}{\partial s} + \omega_d \frac{\partial}{\partial \varphi} \]

\[\hat{\mathcal{F}} = i \left(\frac{\partial F_0}{\partial \mathcal{E}} \frac{\partial}{\partial t} - \frac{c}{q} \frac{\partial F_0}{\partial \psi} \frac{\partial}{\partial \varphi} \right) \]

where the drift frequency \(\omega_d(s; \mathcal{E}, \psi, J_g) \) is

\[\omega_d \equiv \frac{c}{q\gamma} J_g \left[\frac{\partial \omega_g}{\partial \psi} - a \frac{\partial \omega_g}{\partial s} \right] + \frac{p_\parallel^2}{M} \left(\frac{\partial a}{\partial s} \right) \]

• Drift-Action Invariant \(J_d \)

\[\dot{X}_0 \cdot \nabla \psi = 0 \implies J_d \equiv \frac{q}{c} \psi \]
• Perturbed Magnetic Field

○ Perturbed vector potential

\[\delta A \equiv \nabla \delta \alpha + \delta \psi \nabla \varphi - \delta \chi \nabla \psi \]

\[\delta A_{\parallel} = \frac{\partial \delta \alpha}{\partial s} \]

○ Perturbed magnetic field

\[\delta B \equiv \nabla \delta \psi \times \nabla \varphi + \nabla \psi \times \nabla \delta \chi \]

• Perturbed Electric Field

\[\delta E = -\nabla \delta \Phi - \frac{1}{c} \left(\frac{\partial \delta \psi}{\partial t} \nabla \varphi - \frac{\partial \delta \chi}{\partial t} \nabla \psi \right) \]

\[\delta E_{\parallel} = -\frac{\partial \delta \Phi}{\partial s} \]

where \(\delta \Phi \equiv \delta \phi + c^{-1} \partial_t \delta \alpha \).
• Fourier Decomposition

\[
\begin{pmatrix}
\delta G \\
\delta H
\end{pmatrix}
\equiv \sum_{\kappa} \sum_{m=-\infty}^{\infty} \begin{pmatrix}
\delta \tilde{G}_m(s, I, \omega_\kappa) \\
\delta \tilde{H}_m(s, I, \omega_\kappa)
\end{pmatrix} e^{im\varphi - \omega_\kappa t}
\]

where \(I = (J_g, E, J_d) \).

- Unperturbed Operators

\[
\hat{\mathcal{L}} \rightarrow \mathcal{L} = \sigma |v|| \frac{\partial}{\partial s} - i [\omega_\kappa - m \omega_d(s)]
\]

\[
\hat{\mathcal{F}} \rightarrow \mathcal{F} = \omega_\kappa \frac{\partial F_0}{\partial \mathcal{E}} + \frac{mc}{q} \frac{\partial F_0}{\partial \psi}
\]

- Fast-Time-Scale Averaging

\[
\overline{fg} \equiv \sum_{m,\kappa} \tilde{f}^*_m(\psi, s; \omega_\kappa) \tilde{g}_m(\psi, s; \omega_\kappa)
\]
Bounce-Time-Scale Averaging

\[\langle f \rangle (I) \equiv \frac{1}{\tau_b} \sum_{\sigma = \pm 1} \int_{s_L}^{s_U} \frac{ds}{\|v\|} f(s, \sigma; I) \]

with \((s_L, s_U) \equiv \text{bounce points along a field line and}\)

\[\tau_b(I) \equiv \sum_{\sigma} \int_{s_L}^{s_U} \frac{\mathcal{D} ds}{B} = 2 \int_{s_L}^{s_U} \frac{ds}{\|v\|} \equiv 2\pi \frac{\partial J_b}{\partial \mathcal{E}} \]

Second-order Slow-Time Evolution

\[\frac{\partial F_0}{\partial \tau} \equiv \frac{1}{\tau_b} \frac{\partial}{\partial \psi} \left[\tau_b \left\langle \frac{\hat{b}}{qB} \times \nabla \psi \cdot (\delta G \nabla \delta H) \right\rangle \right]
+ \frac{1}{\tau_b} \frac{\partial}{\partial \mathcal{E}} \left[\tau_b \left\langle \dot{X}_0 \cdot (\delta G \nabla \delta H) \right\rangle \right] \]

where

\[\left\langle \dot{X}_0 \cdot (\delta G \nabla \delta H) \right\rangle \equiv \sum_{m, \kappa} \omega_\kappa \text{Im} \left\langle \delta \tilde{G}_m \delta \tilde{H}^*_m \right\rangle \]

\[\left\langle \frac{\hat{b}}{B} \times \nabla \psi \cdot (\delta G \nabla \delta H) \right\rangle \equiv \sum_{m, \kappa} m \text{Im} \left\langle \delta \tilde{G}_m \delta \tilde{H}^*_m \right\rangle \]
Relativistic Quasilinear Drift-Kinetic Diffusion Equation

\[
\frac{\partial F_0}{\partial \tau} \equiv \frac{1}{\tau_b} \frac{\partial}{\partial \mathcal{E}} \left[\tau_b \left(D_{\mathcal{E}}\mathcal{E}_{QL} \frac{\partial F_0}{\partial \mathcal{E}} + D_{\mathcal{E}}\psi_{QL} \frac{\partial F_0}{\partial \psi} \right) \right] + \frac{1}{\tau_b} \frac{\partial}{\partial \psi} \left[\tau_b \left(D_{\psi}\mathcal{E}_{QL} \frac{\partial F_0}{\partial \mathcal{E}} + D_{\psi}\psi_{QL} \frac{\partial F_0}{\partial \psi} \right) \right]
\]

where the relativistic quasilinear bounce-averaged diffusion coefficients are

\[
D_{\mathcal{E}}\mathcal{E}_{QL}(I) \equiv \sum_{m,\kappa} \omega_\kappa^2 \hat{\Gamma}_m(I; \omega_\kappa)
\]

\[
D_{\psi}\mathcal{E}_{QL}(I) \equiv \sum_{m,\kappa} (mc/q) \omega_\kappa \hat{\Gamma}_m(I; \omega_\kappa) \equiv D_{\mathcal{E}}\psi_{QL}(I)
\]

\[
D_{\psi}\psi_{QL}(I) \equiv \sum_{m,\kappa} (mc/q)^2 \hat{\Gamma}_m(I; \omega_\kappa)
\]

with

\[
\hat{\Gamma}_m(I; \omega_\kappa) \equiv \mathcal{F}^{-1} \text{Im} \left\langle \delta\tilde{G}_m \delta\tilde{H}_{m}^* \right\rangle
\]
QUASILINEAR POTENTIAL $\hat{\Gamma}_m(I; \omega_\kappa)$

- Linear Nonadiabatic Drift-Kinetic Equation

$$\mathcal{L} \delta \tilde{G}'_m(\sigma, s) \equiv i\mathcal{F} \delta \tilde{K}_m(s)$$

where

$$\delta \tilde{G}'_m \equiv \delta \tilde{G}_m + i \frac{q}{c} \mathcal{F} \delta \tilde{\alpha}_m$$

$$\delta \tilde{K}_m(s) \equiv \delta \tilde{H}_m(\sigma, s) + \mathcal{L} \left(\frac{q}{c} \delta \tilde{\alpha}_m \right)$$

$$= \frac{iq}{m} \delta \tilde{E}_{\varphi m} + J_g\omega_g \frac{\delta \tilde{B}_{\| m}}{B}$$

$$+ \frac{q}{mc} (m\omega_d - \omega_\kappa) \int \frac{\delta \tilde{B}_m^\psi}{B} \, ds$$

We can show that

$$\hat{\Gamma}_m = \mathcal{F}^{-1} \text{Im} \left\langle \delta \tilde{G}'_m \delta \tilde{K}^*_m \right\rangle$$
• General Solution for $\delta \tilde{G}'_m(\sigma, s)$

$$F^{-1} \delta \tilde{G}'_m(\sigma, s) =$$

$$i\sigma \ e^{i\sigma \theta(s)} \left[\int_{s_L}^{s} \frac{ds'}{|v|} \ e^{-i\sigma \theta(s')} \ \delta \tilde{K}_m(s') \right]$$

$$- \ \frac{\tau_b}{2} \ e^{i\sigma \theta(s)} \left[\cot \Theta \ \left< \delta \tilde{K}_m \ \cos \theta \right> + \left< \delta \tilde{K}_m \ \sin \theta \right> \right]$$

where

$$\theta(s) = \int_{s_L}^{s} \frac{ds'}{|v|} \ \left[\omega_\kappa - m \omega_d(s') \right]$$

$$\Theta = \int_{s_L}^{s_U} \frac{ds}{|v|} \ \left[\omega_\kappa - m \omega_d(s) \right]$$

$$\equiv \ \frac{\tau_b}{2} \ (\omega_\kappa - m \left< \omega_d \right>)$$

○ Note: $\delta \tilde{G}'_m(\sigma, s)$ satisfies matching conditions

$$\delta \tilde{G}'_m(\sigma = +1, \ s = s_L) = \delta \tilde{G}'_m(\sigma = -1, \ s = s_L)$$

$$\delta \tilde{G}'_m(\sigma = +1, \ s = s_U) = \delta \tilde{G}'_m(\sigma = -1, \ s = s_U)$$
• Quasilinear perturbation Potential

\[\hat{\Gamma}_m \equiv \frac{T_b}{2} \left| \langle \delta \tilde{K}_m \cos \theta \rangle \right|^2 \text{Im}(- \cot \Theta) \]

where

\[\cot \Theta \equiv \frac{1}{\pi} \sum_{n=\pm \infty}^{\infty} \frac{\omega_b}{(\omega - m \langle \omega_d \rangle - n \omega_b)} \]

\[\text{Im}(- \cot \Theta) \equiv \sum_{n=\pm \infty}^{\infty} \omega_b \frac{\delta (\omega - m \langle \omega_d \rangle - n \omega_b)}{\text{wave–particle resonances}} \]

\[\hat{\Gamma}_m(I; \omega_\kappa) \equiv \sum_{n=\pm \infty}^{\infty} \pi \delta (\omega - m \langle \omega_d \rangle - n \omega_b) \]

\[\times \left| \langle \delta \tilde{K}_m(s; I, \omega_\kappa) \cos \theta(s; I, \omega_\kappa) \rangle \right|^2 \]
• Relativistic Quasilinear Diffusion Tensor

\[D_{\text{QL}}^{\varepsilon\varepsilon} \equiv \sum_{m,n,\kappa} \omega_{\kappa}^2 \left[\tau_{ac} \left| \left\langle \delta \tilde{K}_m \cos \theta \right\rangle \right|^2 \right] \]

\[D_{\text{QL}}^{\psi\varepsilon} \equiv \sum_{m,n,\kappa} \frac{mc\omega_{\kappa}}{q} \left[\tau_{ac} \left| \left\langle \delta \tilde{K}_m \cos \theta \right\rangle \right|^2 \right] \equiv D_{\text{QL}}^{\varepsilon\psi} \]

\[D_{\text{QL}}^{\psi\psi} \equiv \sum_{m,n,\kappa} \left(\frac{mc}{q} \right)^2 \left[\tau_{ac} \left| \left\langle \delta \tilde{K}_m \cos \theta \right\rangle \right|^2 \right] \]

\[\tau_{ac} \equiv \pi \delta (\omega_{\kappa} - m \langle \omega_d \rangle - n \omega_b) \]
SUMMARY

• First-Principles Derivation of a Relativistic Quasilinear Drift-Kinetic Diffusion Equation for Applications in Radiation-Belt Transport Theory.

• Relativistic Quasilinear Diffusion Tensor is Bounce-Averaged and contains General Wave Polarizations.

• Present Work generalizes previous work of Chen (1999).

Poster is available in PDF format at http://spacsun.rice.edu/~aac/pubs/APS.pdf