7.1 Charged particle motion in two frames of reference

A positive charge q is released from rest at the origin, in a uniform static electric field $E = E\hat{z}$ and a uniform static magnetic field $B = B\hat{x}$. Determine the trajectory of the particle by transforming to a frame in which the electric field is zero, finding the trajectory in that frame, and then transforming back to the original frame. Assume $E < B$ and relativistic particle motion.

7.2 Electromagnetic fields of a rotating planet

A planet of radius a rotates with angular velocity $\omega\hat{z}$ relative to an inertial frame K in which the planet’s center is at rest (here \hat{z} is a unit vector parallel to the spin axis). According to a group of observers sitting on the surface of the planet and at rest with respect to it, there is no electric field at the surface, and the magnetic field is a dipole field with magnetic dipole moment $M = M\hat{z}$ located at the center of the planet. That is,

$$B' = \frac{3\hat{r} (\hat{r} \cdot M) - M}{a^3},$$

where \hat{r} is a unit vector pointing radially outward from the planet’s center.

(a) What is the surface magnetic field, as measured in the inertial frame K?

(b) What is the surface electric field, as measured in the inertial frame K?

In parts (a) and (b) give your answers in spherical polar coordinates, and do not assume $\omega a \ll c$.

(c) What is the total charge Q inside the planet according to measurements made in the frame K? To simplify the calculation assume $\omega a \ll c$. If you find a nonzero value for Q, explain why there is no contradiction with the fact that the group of observers measure no electric field anywhere on the surface.

7.3 Read sections 23-27 of Landau and Lifshitz.

After you have read these sections, for credit write “I have read sections 23-27”.

PHYS 532: Classical Electrodynamics

Homework Set 7 Due at the beginning of class, Friday March 20, 2015